

Draft Preliminary Environmental Assessment Equivalent Report

North Hollywood High School

Prepared for:

Los Angeles Unified School District 333 South Beaudry Avenue, 21st Floor Los Angeles, California 90017 213.241.3199

Prepared by:

Clark Seif Clark, Inc.
CSC Project Number 4007736
4010 Watson Plaza Drive
Lakewood, California 90712
562.420.0000

September 29, 2017

Submitted to:

Los Angeles Unified School District

333 South Beaudry Avenue, 21st Floor Los Angeles, California 90017 213.241.3199

JEFFREY L
BANNON

Exp. No. 5558

No. 5558

Aaron Garrett Project Scientist

Jeffrey L. Bannon, PG Technical Manager

Submitted by:

CSC, Inc. 4010 Watson Plaza, Suite 170 Lakewood, California 90712 (562) 420-0000

www.csceng.com

TABLE OF CONTENTS

Section				
FIGU	JRES		iv	
		CRONYMS		
		VE SUMMARY		
1.0		RODUCTION		
2.0		E DESCRIPTION		
	2.1	Site Identification		
	2.2	Site Description		
	2.3	Designated Contact Person		
3.0	SITI	E BACKGROUND		
4.0		PARENT PROBLEM		
5.0		ENVIRONMENTAL SETTING		
	5.1	Topography	8	
	5.2	Geology		
	5.3	Hydrogeology		
	5.4	Factors Related to Soil Pathways	8	
	5.5	Factors Related to Water Pathways		
	5.6	Factors Related to Air Pathways	9	
6.0	SAN	APLING ACTIVITIES	10	
7.0	INVESTIGATION RESULTS			
	7.1	Analytical Results	15	
	7.2	Summary of Impacted Areas	20	
	7.3	Bulk Sample Results	22	
	7.4	Quality Assurance / Quality Control		
8.0	HUMAN HEALTH SCREENING EVAULATION			
	8.1	Exposure Pathways and Media of Concern	24	
	8.2	Potentially Exposed Receptor Populations	24	
	8.3	Human Health Screening	24	
	8.4	Ecological Screening Evaluation		
9.0		MMUNITY OUTREACH		
10.0	CONCLUSIONS, SUMMARY, AND RECOMMENDATION			
	10.1	Conclusions	27	
		Summary		
	10.3	Recommendation	28	
11.0	REF	FERENCES	29	

FIGURES

Figure 1	Site Location Map
Figure 2	Shallow Soil Sampling Locations
Figure 3	Additional Sampling Locations
Figure 4	SB001 to SB009 Sampling Locations
Figure 5	SB041 Step-out Sampling Locations
Figure 6	SB061 Step-out Sampling Locations
Figure 7	SB065 Step-out Sampling Locations
Figure 8	SB067 Step-out Sampling Locations
Figure 9	SB068 Step-out Sampling Locations
Figure 10	SB069 Step-out Sampling Locations
Figure 11	SB072 Step-out Sampling Locations
Figure 12	SB094 Step-out Sampling Locations
Figure 13	SB100 Step-out Sampling Locations
Figure 14	SB102 Step-out Sampling Locations
Figure 15	SB109 Step-out Sampling Location
Figure 16	Remedial Excavation Areas

TABLES

Table 1	Summary of Soil Vapor Analytical Data
Table 2	Summary of TPH, VOCs, PCBs, PAHs, and SVOCs Analytical Data
Table 3	Summary of OCPs Analytical Data
Table 4	Summary of As, Pb, and PCBs Analytical Data
Table 5	Summary of Metals Analytical Data
Table 6	Summary of Estimated Volumes of Impacted Soil
Table 7	Summary of Soil Waste Characterization Data
Table 8	Summary of Bulk Sample Analytical Data
Table 9	Human Health Screening Evaluation

APPENDICES

Appendix A	PEA-Equivalent Sampling Locations
Appendix B	Photos
Appendix C	Copy of Community Notification
Appendix D	Soil Boring Logs
Appendix E	Laboratory Analytical Results

List of Acronyms

bgs below ground surface

CalEPA California Environmental Protection Agency

COPC Chemicals of potential concern

DTSC Department of Toxic Substances Control

ESA Environmental Site Assessment

ft feet in inch

LAUSD Los Angeles Unified School District

mg/kg milligram/kilogram mg/L milligram/Liter msl mean sea level

OCP organochlorine pesticides

PAH polynuclear aromatic hydrocarbon

PCB polychlorinated biphenyl

PEA Preliminary Environmental Assessment

PG Professional Geologist

QA/QC quality assurance/quality control RAW Removal Action Workplan RSL Regional Screening Level SIM Selective Ion Monitoring

Site North Hollywood High School, 5231 Colfax Avenue, North Hollywood, CA

STLC Soluble Threshold Limit Concentration

SVOC semi-volatile organic compound

TCLP Toxicity Characteristic Leaching Procedure

TPH total petroleum hydrocarbons

μg/kg microgram/kilogram

USA Underground Service Alert

USEPA United States Environmental Protection Agency

VOC volatile organic compound

Draft Preliminary Environmental Assessment Equivalent Report North Hollywood High School

EXECUTIVE SUMMARY

The following Draft Preliminary Environmental Assessment Equivalent (PEA-E) report has been prepared by Clark-Seif-Clark, Inc. (CSC) on behalf of the Los Angeles Unified School District (LAUSD) for portions of the existing North Hollywood High School as part of a Comprehensive Modernization Project at the school. North Hollywood High School is located at 5231 Colfax Avenue on the northwest corner at the intersection of Colfax and Magnolia Avenues in North Hollywood, California 91601 (Figure 1). The school site is approximately 22-acres and developed with 10 permanent buildings and approximately 20 modular buildings. The school buildings include classrooms, offices, cafeteria, gym, auto shop, and a wood shop (Figure 2). Other parts of the school include a sports field, petting zoo, agriculture area, courtyards, walkways, and landscaped areas.

The school site was undeveloped until at least 1927/1928 when the high school was built. A Phase I Environmental Site Assessment (E2 ManageTech, Inc., August 25, 2016) and PEA Equivalent Sampling locations document (E2 ManageTech, Inc., August 24, 2016) identified the following items of potential environmental concern to be evaluated by sampling:

- Several septic tanks, drywells and cesspools
- Hydraulic lifts and clarifier at the Auto Shop
- Aerial deposition from two incinerators/chimneys
- Impact to soil from lead-based paint, arsenic and/or organochlorine pesticides (OCP).

Field activities included a total of 119 initial soil borings with an additional 31 step-outs borings at locations where concentrations exceeded screening levels. A total of 15 soil vapor probes were also completed on site. Initial field sampling activities were completed in November and December 2016, and step-out borings were installed in March, April, and June 2017. In addition, nine initial borings were installed around the East Gym in July 2017 which was added to the PEA sampling program. Samples collected from the Site were selectively analyzed for OCPs by EPA Method 8081, lead and arsenic by EPA Method 6010, total petroleum hydrocarbons (TPH) by EPA Method 8015M, volatile organic compounds (VOCs) by EPA Method 8260B, semi-volatile organic compounds (SVOCs) by 8270C, polychlorinated biphenyls (PCBs) by EPA Method 8082, and polyaromatic hydrocarbon (PAHs) by 8270 SIM. Soil vapor samples were analyzed for VOCs by EPA Method 8260B.

No VOCs were detected above laboratory detection limits in any of the soil vapor samples collected from the Site (Table 1). In addition, no TPH, VOCs, SVOCs, PAHS, or PCBs were detected above laboratory detection limits in any soil samples (Table 2).

OCPs detected at the site included chlordane (alpha, gamma, total), 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, dieldrin, endrin, endrin aldehyde, and heptachlor epoxide. None of these constituents were detected above screening levels (Table 3).

Lead and arsenic data for samples from shallow borings adjacent to buildings is summarized in Table 4. Metal concentrations in soil samples adjacent to the Septic Pits are summarized on Table 5. Metals concentrations were within typical background ranges for California soils with the exception of lead and arsenic concentrations in a few samples summarized below:

- Lead was initially detected above 80 mg/kg at 13 soil sample locations (SB043, SB051, SB065, SB067, SB068, SB069, SB071, SB072, SB094, SB100, SB109, SB114, and SB115) at concentrations ranging from 81.4 to 357 mg/kg.
- Arsenic was initially detected above 12 mg/kg in four soil sample locations (SB041, SB061, SB102, and SB119) at concentrations ranging from 15.7 to 54.5 mg/kg.

Additional step-out sampling was completed at sample locations where arsenic or lead concentrations exceeded screening levels to delineate extent of impact. Those areas identified with lead or arsenic concentrations above screening levels should be remediated as part of the Comprehensive Modernization Project planned at the school. A Removal Action Work Plan (RAW) should be prepared to describe the procedure for remediating soil with elevated lead or arsenic concentrations to acceptable levels.

1.0 INTRODUCTION

The following report summarizes methods, observations and results of a soil and soil vapor investigation completed at North Hollywood High School, 5231 Colfax Avenue, North Hollywood, California (Figure 1). Work was conducted by Clark Seif Clark, Inc. (CSC) on behalf of the Los Angeles Unified School District (LAUSD) for portions of the existing North Hollywood High School as part of a Comprehensive Modernization Project at the school. Initial field activities were conducted in November and December 2016, and step-out sampling was completed in March, April, June, and July 2017 in accordance with LAUSD Work Plan (E2 ManageTech, Inc., August 2016). In addition, nine initial soil borings were installed around the East Gym in July 2017 which was added to the PEA sampling program. The scope of work included collection of soil and soil vapor samples for analysis of chemicals of potential concern (COPC).

The objective of the PEA-E investigation was to:

- Determine through sampling and analyses whether historical uses at the Site resulted in deposition of COPC in soil or soil vapor.
- Determine the amount, concentration and extent of COPC on site.
- Evaluate potential risk posed by identified impacts.
- Recommend further action or no further action based on findings.

2.0 SITE DESCRIPTION

Site description information was obtained from a Phase I Environmental Site Assessment (ESA) prepared for the Site (E2 ManageTech, Inc., August 2016).

2.1 Site Identification

The site is identified as North Hollywood High School and the property has been assigned Los Angeles Assessor's Parcel Number 2348-013-900.

2.2 Site Description

North Hollywood High School is located at 5231 Colfax Avenue on the northwest corner of the intersection of Colfax and Magnolia Avenues in the North Hollywood, California 91601 (Figure 1). The School site is approximately 22-acres and developed with 10 permanent buildings and approximately 20 modular buildings. The school buildings include classrooms, offices, cafeteria, gym, auto shop, and a wood shop (Figure 2). Other parts of the school include a sports field, petting zoo, agriculture area, courtyards, walkways, and landscaped areas.

Adjacent and surrounding sites consist mostly of multifamily residences. Commercial/retail businesses (barbershop, donut shop, fast food restaurant) are located to the southeast. No environmental concerns from adjacent or nearby sites were identified in the Phase I assessment.

2.3 Designated Contact Person

The Deputy Director of the LAUSD Office of Environmental Health and Safety, Mr. Pat Schanen, is the designated contact person. Mr. Schanen's contact information is listed below.

Los Angeles Unified School District Office of Environmental Health & Safety 333 South Beaudry Avenue, 28th Floor Los Angeles, California 90017 213.241.3199

3.0 SITE BACKGROUND

Site background information was obtained from a Phase I ESA (E2 ManageTech, Inc., August 25, 2016). The site was undeveloped until at least 1927/1928 when the school was built. Several areas of environmental concern were identified at the school and are described below and shown on Figures 2 and 3.

- West Gym A transformer vault/switchboard room and a boiler room were present from as early as 1955 to 1969. The time these features were no longer used is unknown. Historical boilers may have used bunker fuel or diesel fuel stored in USTs. However, evidence of historical USTs for the boilers was not identified.
- Computer Labs A Metal Shop, Graphic Art area, and Electric Shop were present in this area of the school in 1964 and operated for an unknown period of time.
- Auto Shop An auto shop has been present since 1964. Hydraulic hoists and a three-stage clarifier are present at the Auto Shop.
- Wood Shop The present Wood Shop was previously used as the Auto Shop. An incinerator/chimney was located at the Wood Shop.
- Historic Print Shop Located in the area north of the Cafeteria from as early as 1955 to 1961.
- Septic tanks / drywells / cesspools Building plans from 1930, 1933, and 1964 indicated a total of four septic pits and seven cesspools were located on site. In addition, a "chemical cesspool" and "concrete yard and grease pit" were located on site.

The following Recognized Environmental Conditions (RECs) were identified during the Phase I ESA:

- Potential subsurface releases from solvent usage at the Metal Shop, Graphic Arts Area, and an Electric Shop which were located in the present Computer Lab location;
- Potential subsurface releases of automotive chemicals, petroleum-based products or solvents at the present Auto Shop as well as from hydraulic lifts and a clarifier located at the Auto Shop;
- Potential releases of petroleum—based products or solvents at the former Wood Shop, located in the present Auto Shop;
- Potential releases of COPC at several septic tanks, drywells, and cesspools located on site;
- Aerial deposition of COPC from an incinerator/chimney located in the basement of East Gym/Auditorium and at an incinerator/chimney located in the present Wood Shop building;
- Potential releases of solvents and printing chemicals at the former Print Shop, located north of the present Cafeteria;
- Lead-based paint, arsenic, and/or OCPs which may have been used on site.

A PEA Equivalent Sampling Locations document (E2 ManageTech, Inc., August 24, 2016) was prepared to evaluate RECs identified in the Phase I ESA. Field and analytical work completed in this assessment was based this document. A copy of the PEA Equivalent Sampling Locations document is provided in Appendix A.

4.0 APPARENT PROBLEM

The Phase I ESA identified several areas of concern on the school where potential COPC could be present. Based on activities conducted on the school campus which included possible usage of solvents or petroleum-products, historical cesspits/dry wells/septic tanks, a grease pit, a clarifier, as well as lead-based paint, arsenic, and/or OCPs in shallow soils, COPC include OCPs, lead, arsenic, and other metals, TPH, VOCs, SVOCs, and PAHs. The sampling effort was designed to assess concentrations of COPC (if any) in the subsurface and provide sufficient data to evaluate potential risk to human health.

5.0 ENVIRONMENTAL SETTING

This section describes topography, geology, and hydrogeology and potential exposure pathways associated the site environmental setting.

5.1 Topography

According to the US Geological Survey, Van Nuys, topographic map, the site is at an elevation of approximately 640 feet above mean sea level. The topography in the immediate area is generally flat with a slight slope to the southeast. The nearest water body towards the southeast direction from the school is located approximately 1.5 miles away.

5.2 Geology

The site is located within the Transverse Ranges Province in the Los Angeles Basin. Subsurface sediments consist of younger and older alluvial deposits of interbedded silts, sands, and gravels from the Santa Monica Mountains. A possible unnamed fault crosses the site from northeast to southwest and is depicted on US Geological Society Quaternary Faults Map (E2 ManageTech, Inc., August 25, 2016). Sediments encountered during drilling consisted mostly of fine silty sand and sand.

5.3 Hydrogeology

Groundwater information from nearby sites indicated groundwater is first encountered at depths ranging from 130 to 150 feet below ground surface. Groundwater in the area is expected to flow north and east towards the Central Branch Tujunga Wash.

5.4 Factors Related to Soil Pathways

The investigation focused on shallow soils where direct dermal contact with soil is the most likely exposure pathway for students or future construction workers. Current exposure is limited to bare dirt areas which are primarily confined to planter boxes and tree wells. Future direct dermal exposure to construction workers is possible during demolition and re-construction activities if impacted soil has not been removed prior to work.

5.5 Factors Related to Water Pathways

Based on depth to groundwater and the nearest water body, no impacts to ground or surface water are expected from COPC at the school.

5.6 Factors Related to Air Pathways

Non-volatile constituents bound to dust particles is the primary exposure route comprising the air pathway. Lead and arsenic could be released via the air pathway.

Potential exposure from a former incinerator/chimney located in the basement of East Gym/Auditorium, a former incinerator/chimney located in the present Wood Shop building and an inactive paint spray booth is no longer considered potential air pathways.

6.0 SAMPLING ACTIVITIES

Field activities included a total of 119 initial soil borings with an additional 31 step-outs borings at locations where concentrations exceeded screening levels. The majority of borings locations (SB21-SB109 and SB111 to SB119) where drilled to 2.5 feet to collect shallow samples for arsenic, lead and OCPs. A total of 21 borings were drilled to depths between 8 and 40 feet to evaluate potential impacts associated with hydraulic lifts, auto shop clarifier, a historical grease pit, 3 historical septic tanks, and 8 historical cesspool/drywells. A total of 15 soil vapor probes were also completed on site to evaluate potential VOC impacts associated with former site activities.

Initial field sampling activities were completed in November and December 2016, and step-out borings were installed in March, April, and June 2017. In addition, nine initial borings were installed around the East Gym in July 2017 which was added to the PEA sampling program. Samples collected from the Site were selectively analyzed for OCPs by EPA Method 8081, lead and arsenic by EPA Method 6010, TPH by EPA Method 8015M, VOCs by EPA Method 8260B, SVOCs by 8270C, PCBs by EPA Method 8082, and PAHs by 8270 SIM. All work was conducted under direction of a registered California Professional Geologist. Photos of the school and sampling locations are provided in Appendix B.

6.1 Community Notifications

Prior to sampling activities, the school's students, faculty, and immediate school neighbors were notified of the investigation with an Assessment Work Notice. The Assessment Work Notice was mailed to all of the school's students, hand delivered to immediate neighbors, and copies were provided to school faculty. A copy of the Assessment Work Notice is provided in Appendix C.

6.2 Health and Safety Plan

A site-specific health and safety plan to evaluate concerns associated with the investigation was implemented. The health and safety plan included safety meetings prior to start of field activities to make site personnel aware of site-related health and safety issues.

6.3 Pre-Sampling Site Inspection

Prior to initiating field activities, the site was visited with LAUSD OEHS to assess sample locations. Sampling locations were based on the LAUSD work plan for the investigation (Appendix A).

6.4 Borehole Clearance

Underground Services Alert (USA) was contacted prior to sampling to clear locations of underground utilities. USA notified utility owners of up-coming sampling activity to mark locations of their lines.

Additionally, each drilling location was screened by a contracted utility locator company (on October 29 and December 10, 2016, March 18 and July 19, 2017). Equipment used to located potential subsurface obstructions included a Schonstedt GA-52 magnetic gradiometer, Geonics EM61 MK2 time domain instrument, Fisher M-Scope TW-6 pipe and cable locator, RD800 line tracer, and a GSSI SIR 3000 Ground Penetrating Radar (GPR) unit with a 400 MHz transducer. Some sampling locations were adjusted slightly to avoid underground utilities.

6.5 Sampling Locations

Soil samples locations and depths were completed as specified in the PEA Equivalent Sampling Locations document and are described below. Sampling locations are shown on Figures 2 to 16.

Locations SB001 to SB007 were located in the Auto Shop to assess the hydraulic hoists (Figure 4). Samples were collected at 10, 15, and 20 feet below ground surface (bgs) in these borings.

Locations SB008 to SB009 were located just outside the Auto Shop to assess the clarifier (Figures 3 and 4). Samples were collected at 4 and 8 feet bgs in these borings.

Location SB010 was located to the historical grease pit (Figure 3) with samples collected at 10 and 15 feet bgs.

Locations SB011 to SB014 were located adjacent to historical cesspools, septic pits, or dry wells (Figure 3) with samples collected at 10 and 15 feet bgs.

Locations SB015 to SB020 and SB110 were also located adjacent to historical cesspools, septic pits, or dry wells (Figure 3) with samples collected at 5, 10, 15, 20, 25, 30, 35, and 40 feet bgs.

Locations SB21 to SB109 and SB111 to SB119 were adjacent to the buildings planned for renovation (Figure 2). Samples were collected at 0 to 0.5, 1 to 1.5, and 2 to 2.5 feet bgs in these borings.

Additional soil sample borings ("step-outs") were installed where impacts were initially identified in order to define the extent of area affected. These locations are shown on Figures 5 to 15.

Soil vapor boring locations SV1 to SV15 were completed adjacent to the Auto Shop, Computer Lab, and Wood Shop as indicated in the work plan and shown on Figure 3.

6.6 Soil Vapor Sampling

Soil vapor sampling at the school was conducted on November 19 and 20, 2016.

A total of 15 soil vapor probes were installed around the Auto Shop, Wood Shop, and Computer Lab (former location of Metal Shop, Graphic Arts Area, and an Electric Shop) to assess potential VOCs from associated activities conducted in this area of the school. Soil vapor sample locations are shown on Figure 3.

Soil vapor borings were installed to a depth of 15 feet bgs using a truck-mounted, direct-push drill rig with the vapor probes set at depths of 5 and 15 feet bgs. Nylaflow tubing (¼ inch diameter) equipped with vapor implants (filters/vapor sampling tip) was placed at the target depths with an approximate one foot sand pack (clean #4 Monterey sand). Approximately six inches of dry granular bentonite was placed above the sand pack. Hydrated bentonite granules filled the remaining bore hole.

Soil vapor samples were collected from the probes using a vacuum pump sampling system, which consists of calibrated flow meter and vacuum gauge. The soil vapor sampling system is constructed of stainless steel, glass, nylaflow and Teflon components. Vacuum integrity of the sampling system was tested prior to and after the soil vapor survey using leak-detection testing methods.

Soil vapor samples were collected using a glass syringe fitted with a disposable needle and a gas tight valve. Immediately following collection, the vapor samples were taken to the on-site mobile laboratory for analysis.

The soil vapor samples were analyzed in the field using a gas chromatogram/mass spectrometer for 30 target compounds. Sampling activities were completed in accordance to the *Leaking Underground Fuel Tank Guidance Manual*, California State Water Resources Control Board, September 2012 and *Advisory Active Soil Gas Investigations*, California Department of Toxic Substances July 2015.

6.7 Soil Sampling

Soil sampling was conducted on November 5, 6, 19, and 20, December 2, 3, and 10, 2016, and March 25, April 29, and July 20, 2017. A Geoprobe direct push rig equipped with a 2-inch diameter stainless steel sampling tube fitted with acetate tubes was used to collect most of the soil samples. Some of shallow boring locations were drilled used a hand auger where access was limited.

Soil encountered during sampling activities consisted mostly of brown silty sand and fine sand. No staining, odors, or obvious indications of contamination were observed in any of the soil samples. Lithologic logs for the deep borings are provided in Appendix D.

Soil samples were collected in certified clean 4-ounce glass jars when using hand equipment or in acetate sleeves when using a drill rig. Sample locations were identified as indicated in the work plan. Duplicate samples were collected to verify results. Samples for VOC analysis were prepared in the field using EPA Method 5035, which included three aliquots of soil preserved in sodium bisulfate and methanol.

Soil samples were properly labeled and placed in a cooled ice chest and transported to the laboratory for analysis. Standard Chain-of-Custody was maintained on all samples. Standard decontamination procedures were used during the handling of all sampling equipment in accordance with industry standard methods. Samples were picked up by the laboratory's courier on the same day of collection.

6.8 Soil Sampling Analysis Plan

A soil sampling analysis plan was prepared by E2 ManageTech and is included in Appendix A. This document outlined the proposed sampling program at the site. Soil samples collected from the school were selectively analyzed as specified by LAUSD OEHS for the following COPCs:

- OCP by EPA Method 8081
- Lead and arsenic by EPA Method 6010
- Total Petroleum Hydrocarbons (TPH) by EPA Method 8015M
- PCBs by EPA Method 8082
- VOCs by EPA Method 8260B
- Semi-Volatile Organic Compounds (SVOCs) by 8270C
- Polyromantic Hydrocarbons (PAHs) by 8270 SIM
- Title 22 Metals by 6010B/7000

Soil samples from borings adjacent to the hydraulic hoists, borings SB001 to SB007 (Figure 4), were analyzed for TPH and VOCs at 10 feet bgs in all borings except borings SB001 where both the 10 and 15 foot samples were analyzed.

Soil samples collected at 4 and 8 feet bgs adjacent to the clarifier, borings SB008 and SB009 (Figure 4), were analyzed for TPH, VOCs, and PCBs.

Soil samples collected at 10 and 15 feet bgs from the boring adjacent to a historical grease pit, boring SB010 (Figure 3), were analyzed for TPH and VOCs.

Soil samples at all depths from borings adjacent to historical cesspools, septic pits, or dry wells, borings SB011 to SB020 and SB110 (Figure 3), were analyzed for TPH, VOCs, PAHs, and metals.

Soil samples from shallow borings adjacent to buildings for renovation, SB21 to SB108 (Figure 2), were first analyzed for arsenic, lead, and OCPs from 0.5 feet bgs. Deeper samples from 1.5 and 2.5 feet bgs were analyzed based on results of upper samples. Shallow borings adjacent to east gym, SB111 to SB119 (Figure 2), were analyzed at all shallow sample depths of 0.5, 1.5, and 2.5 feet bgs for arsenic, lead, and OCPs.

The soil sample collected at 0.5 feet bgs from the boring adjacent to the incinerator, boring SB109 (Figure 3), was analyzed for SVOCs and metals.

6.9 Bulk Sample

One bulk sample was collected of residual ash/debris in the school's incinerator which is no longer in use. The sample was collected directly from the incinerator into a clean 4-ounce glass jar and analyzed for SVOCs by EPA Method 8270C and Title 22 Metals by EPA Method 6010B/7000.

6.10 Analytical Laboratories

Soil samples were analyzed at Chemtek Environmental Laboratories of Santa Fe Springs CA, and at American Environmental Testing Laboratory of Burbank CA, both state-certified laboratories. Soil vapor samples were analyzed onsite by Optimal Technology of Thousand Oaks CA, also a state-certified laboratory.

6.11 Other Contractors

Soil boring drilling, soil sampling, and soil vapor probe installation was completed by Kehoe Engineering and Testing of Huntington Beach CA. Geophysical surveys of the sample areas were completed by Southwest Geophysics of San Diego CA.

6.12 Variances

One sample location (SB029) was not analyzed for OCPs. However, low concentrations of OCPs below screening levels were detected in sample SB030 located approximately 25 feet south of SB029 on the other side of the building. This data characterizes OCP concentrations in this area.

An additional possible septic pit or dry well was discovered during the course of the investigation when school staff notified CSC of the location. A soil boring (SB110) was placed adjacent to the additional possible septic pit or dry well and analyzed for the same constituents as other septic pits/dry wells.

One additional dual-soil vapor probe was installed, sampled, and analyzed for VOCs than indicated on the work plan (a total of 15 dual-soil vapor probes installed rather than 14).

Shallow borings, SB111 to SB119, were installed adjacent to the east gym in July 2017; this building is also planned to be renovated as well. Soil samples were analyzed for arsenic, lead, and OCPs at depths of 0.5, 1.5, and 2.5 feet bgs.

7.0 INVESTIGATION RESULTS

Tables 1 to 9 summarize results of the investigation. Laboratory reports are provided in Appendix E.

Lead and arsenic were the only COPC identified above screening levels. Further, the distribution of the lead and arsenic is very limited. Arsenic was detected in only four of the initial 108 locations above screening levels and lead was detected in only 13 of the initial 108 locations above screening levels. Analytical results are discussed below.

7.1 Analytical Results

Soil Vapor

No VOCs were detected in any soil vapor samples collected from the site (Table 1).

Soil

No TPH, VOCs, SVOCs, PAHs, or PCBs were detected in any of the analyzed samples (Table 2).

As shown on Table 3, OCPs detected at the site included chlordane (alpha, gamma, total), 4, 4'-DDD, 4, 4'-DDE, 4, 4'-DDT, dieldrin, endrin, endrin aldehyde, and heptachlor epoxide. None of these constituents were detected above screening levels. OCPs detections are summarized below.

- Total chlordane was detected in 29 samples from 1.82 J to 232 ug/kg.
- 4, 4'-DDD was detected in 10 samples from 1.14 J to 33.3 ug/kg.
- 4, 4'-DDE was detected in 29 samples from 1.01 J to 1,140 ug/kg.
- 4, 4'-DDT was detected in 30 samples from 1.41 J to 146 ug/kg.
- Dieldrin was detected in 13 samples from 1.08 J to 10.1 J ug/kg.
- Endrin was detected in eight samples from 1.89 J to 48.8 ug/kg.
- Endrin aldehyde was detected in three samples from 1.07 J to 1.81 J ug/kg.
- Heptachlor epoxide was detected in two samples from 1.95 J to 17.5 ug/kg.

Arsenic and lead data for samples from shallow borings adjacent to buildings is summarized in Table 4. Metal concentrations in the soil samples adjacent to the Septic Pits are summarized on Table 5. Metals concentrations were within typical background ranges for California soils with the exception of arsenic and lead concentrations as discussed below.

Arsenic was detected above 12 mg/kg in only four of 108 initial soil sample locations (SB041, SB061, SB102, and SB119) at concentrations ranging from 15.7 to 54.5 mg/kg.

Lead was detected above 80 mg/kg in only 13 of 108 initial soil sample locations (SB043, SB051, SB065, SB067, SB068, SB069, SB071, SB072, SB094, SB100, SB109, SB114, and SB115) at concentrations ranging from 81.4 to 357 mg/kg. All but one of these 13 sample locations were located in planter areas where soil is exposed.

Additional Soil Sampling ("Step-outs")

Areas with arsenic or lead above screening levels were identified in the following locations:

- SB041 Arsenic three step-out borings
- SB043 Lead no step-out borings
- SB051 Lead no step-out borings
- SB061 Arsenic three step-out borings
- SB065 Lead two step-out borings
- SB067 Lead four step-out borings
- SB068 Lead four step-out borings
- SB069 Lead one step-out boring
- SB071 Lead two step-out borings
- SB072 Lead no step-out borings
- SB094 Lead one step-out borings
- SB100 Lead two step-out borings
- SB102 Arsenic eight step-out borings
- SB109 Lead one step-out boring
- SB114 Lead no step-out borings
- SB115 Lead no step-out borings
- SB119 Arsenic no step-out borings

Additional sampling was completed at sample locations with arsenic or lead concentrations above screening levels in order to define the limits of impact. Additional sample locations were generally located at 5-foot spaced intervals in all available directions (north, east, south, and west). However, underground utility lines, building walls, and/or fences were not crossed when trying to find the lateral limits, as specified by LAUSD. If an underground utility line, building, or fences impeded the lateral direction of a step-out sample's location, no sample was collected and the lateral limit was defined by the utility line or fence.

The lateral and vertical limits of arsenic or lead impacts have been defined by either soil sampling data or by underground utility / building wall / fence. Figures for areas with step-out sample locations depict underground utilities and any other obstructions (Figures 5-15). Photos of these areas are provided in Appendix B. Additional soil sampling data is included in Table 4.

Location SB041 (Figure 5)

Sample location SB041 was located in an asphalt paved area adjacent to the north side of a modular classroom building. Arsenic was initially detected at 32.2 mg/kg at 0.5 feet bgs, 25.9 mg/kg at 1.5 feet bgs, and not detected at 2.5 feet bgs. Arsenic was not detected or below 12 mg/kg in samples from step-out borings SB041S2 and SB041S3 located to the north and east of SB041. A modular classroom building is located immediately south of SB065. Underground utility lines were identified to the north, east, and west beyond the step-out borings.

Location SB043 (No figure since no step-outs samples at this location)

Sample location SB043 was located in an unpaved area adjacent to the south side of a modular classroom building inside the petting zoo. Lead was initially detected in samples from boring SB043 at 168 mg/kg at 0.5 feet bgs and at 12.6 mg/kg at 1.5 feet bgs. No additional sampling was conducted at SB043 due to underground utility lines to the east and south, a fence to the west, and a fence and modular classroom building to the north of SB043.

Location SB051 (No figure since no step-outs samples at this location)

Sample location SB051 was located in a landscaped area adjacent to the north side of the Chicken Shack building in the petting zoo. Lead was initially detected in samples from boring SB051 at 96.7 mg/kg at 0.5 feet bgs, and at 25.9 mg/kg at 1.5 feet bgs. No additional sampling was conducted at SB051 due to underground utility lines to the north and west, a fence to the east, and Chicken Shack building to the south of SB043.

Location SB061 (Figure 6)

Sample location SB061 was located in an asphalt paved walkway area adjacent to the south side of the Auto Shop building. Arsenic was initially detected at 15.7 mg/kg at 0.5 feet bgs and not detected at 1.5 feet bgs. Arsenic was not detected in samples from step-out borings SB061S1, SB061S2 and SB061S3 located to the east and west of SB061. The Auto Shop building is located immediately north of SB061. Underground utility lines were identified to the immediate south, east and west beyond SB061S1 and SB061S3.

Location SB065 (Figure 7)

Sample location SB065 was located in a landscaped planter area adjacent to the southwest side of the Classroom 1 building. Lead was initially detected at 149 mg/kg at 0.5 feet bgs and at 8.9 mg/kg at 1.5 feet bgs. Lead was not detected or below 80 mg/kg in samples from step-out borings SB065S1 and SB065S2 located to the north and south of SB065. A classroom building is located immediately east of SB065. An underground utility line was identified to the immediate east.

Location SB067 (Figure 8)

Sample location SB067 was located in a landscaped planter area adjacent to the southeast side of the Classroom 1 building. Lead was initially detected at 207 mg/kg at 0.5 feet bgs and at 14.6 mg/kg at 1.5 feet bgs. Lead was below 80 mg/kg in samples from step-out borings SB067S1 and SB067S2 located to the north and south of SB067. However, lead was detected above 80 mg/kg in SB067S4 at 176 mg/kg a utility line is south beyond SB067S4. A classroom building is located immediately west of SB067. No samples were collected to the east of SB067, as specified by LAUSD; additional samples were limited to the planter area which has a curb and pavement beyond planter area.

Location SB068 (Figure 9)

Sample location SB068 was located in a landscaped planter area adjacent to the northeast side of the Classroom 1 building. Lead was initially detected at 211 mg/kg at 0.5 feet bgs and at 50.7 mg/kg at 1.5 feet bgs. Lead was not detected or below 80 mg/kg in samples from step-out borings SB068S1, SB068S2, SB068S3, and SB068S4 located to the north, east, and south of SB069. A classroom building is located immediately west of SB068.

Location SB069 (Figure 10)

Sample location SB069 was located in a landscaped planter area adjacent to the north side of the Classroom 1 building. Lead was initially detected at 131 mg/kg at 0.5 feet bgs and at 11.8 mg/kg at 1.5 feet bgs. Lead was not detected in samples from step-out boring SB069S1 located to the west of SB069. A classroom building is located immediately south of SB069. Underground utility lines were identified to the immediate north, west and east beyond SB069S1.

Location SB071 (No figure since no step-outs samples at this location)

Sample location SB071 was located in a planter area adjacent to the east side of the Wood Shop building. Lead was initially detected in samples from boring SB071 at 130 mg/kg at 0.5 feet bgs and at 11.8 mg/kg at 1.5 feet bgs. No additional sampling was conducted at SB071 as specified by LAUSD, impacted area is assumed to be limited to planter area.

Location SB072 (Figure 11)

Sample location SB072 was located in a central planter / tree well that is surrounded by a cement paved area adjacent to the south side of the Wood Shop building. Lead was initially detected in samples from boring SB072 at 94.2 mg/kg at 0.5 feet bgs and at 2.05 mg/kg at 1.5 feet bgs. Tree wells / planters are located directly east and west. Lead was detected at low concentrations below 80 mg/kg in samples from step-out borings placed in the adjacent tree wells (SB071S1 and SB072).

Location SB094 (Figure 12)

Sample location SB094 was located in an asphalt paved walkway area adjacent to the east side of the Parent & Family Center building. Lead was initially detected at 81.4 mg/kg at 0.5 feet bgs, 155 mg/kg at 1.5 feet bgs, and 71 mg/kg feet bgs. Lead was not detected in samples from stepout boring SB094S1 located to the north of SB094. The Parent and Family Center building is located immediately west of SB094. Underground utility lines were identified to the immediate east and south; another utility line was located beyond SB094S1.

Location SB100 (Figure 13)

Sample location SB100 was located in a grass field area adjacent to the north side of the band room building. Lead was initially detected at 125 mg/kg at 0.5 feet bgs and at 3.13 mg/kg at 1.5 feet bgs. Lead was either not detected or below the action limit of 80 mg/kg in samples from step-out borings SB100S1 and SB100S2 located to the immediate east and west of SB100. The Band Room building is located immediately south of SB100 and an underground line is between the Band Room building and SB100. Underground utility lines were also identified to the north of location SB100 (beyond SB100S1 and SB100S2).

Location SB102 (Figure 14)

Sample location SB102 was located in an asphalt paved storage area adjacent to the south side of the Band room building. Arsenic was initially detected at 54 mg/kg at 0.5 feet bgs and not detected at 1.5 feet bgs. Arsenic was either not detected in samples from step-out borings SB102S3, SB102S5, and SB102S6 located to the east, west, and south of SB102. A storage container partially blocked the area to the west of SB102. The Band Room building is located immediately north of SB102.

Location SB109 (Figure 15)

Sample location SB109 was located in a landscaped area adjacent to the north side of the Wood Shop building. Lead was initially detected in samples from boring SB109 at 101 mg/kg at 0.5 feet bgs, at 132 mg/kg at 1.5 feet bgs, and at 88.8 mg/kg at 2.5 feet bgs. Lead was not detected or below 80 mg/kg in the samples from the step-out boring, SB109S1, located to the west SB109. A classroom building is located immediately south of SB109. An underground utility line was identified to the immediate east and a bench and concrete walkway is to the north of SB109.

7.2 Summary of Impacted Areas

Initial sampling identified 17 locations where soil results exceeded DTSC screening levels. The extent of soil impact above screening levels was delineated by step-out borings or physical constraints as summarized below. An overview of the school showing the impacted areas is provided as Figure 16.

A breakdown of the estimated volume of impacted soil for each location is included on Table 6. As shown on Table 6, a total of 71 cubic yards of soil impacted with lead or arsenic should be removed as part of the modernization project. A summary of waste characterization for each impacted area is provided on Table 7.

Location SB041

Sample location SB041 was located in an asphalt paved area adjacent to the north side of a modular classroom building. Arsenic impacted soil above 12 mg/kg is limited to an approximate seven by 15 foot area to a depth of 3 feet bgs. Calculated volume in this area is approximately 11.7 cubic yards.

Location SB043

Sample location SB043 was located in an unpaved area adjacent to the south side of a modular classroom building inside the petting zoo. Lead impacted soil above 80 mg/kg is limited to an approximate eight by eight foot area to a depth of 1.5 feet bgs. Calculated volume in this area is approximately 3.6 cubic yards.

Location SB051

Sample location SB051 was located in a landscaped area adjacent to the north side of the Chicken Shack building in the petting zoo. Lead impacted soil above 80 mg/kg is limited to an approximate five by 10 foot area to a depth of 1.5 feet bgs. Calculated volume in this area is approximately 2.8 cubic yards.

Location SB061

Sample location SB061 was located in an asphalt paved walkway area adjacent to the south side of the Auto Shop building. Arsenic impacted soil above 12 mg/kg is limited to an approximate five by 10 foot area to a depth of 1.5 feet bgs. Calculated volume in this area is approximately 2.8 cubic yards.

Location SB065

Sample location SB065 was located in a landscaped planter area adjacent to the southwest side of the Classroom 1 building. Lead impacted soil above 80 mg/kg is limited to an approximate five by 30 foot area in the planter to a depth of 1.5 feet bgs. Calculated volume in this area is approximately 8.3 cubic yards.

Location SB067

Sample location SB067 was located in a landscaped planter area adjacent to the southeast side of the Classroom 1 building. Lead impacted soil above 80 mg/kg is limited to an approximate eight by 15 foot area in the planter to a depth of 1.5 feet bgs. Calculated volume in this area is approximately 6.7 cubic yards.

Location SB068

Sample location SB068 was located in a landscaped planter area adjacent to the northeast side of the Classroom 1 building. Lead impacted soil above 80 mg/kg is limited to an approximate eight by 10 foot area in the planter to a depth of 1.5 feet bgs. Calculated volume in this area is approximately 4.4 cubic yards.

Location SB069

Sample location SB069 was located in a landscaped planter area adjacent to the north side of the Classroom 1 building. Lead impacted soil above 80 mg/kg is limited to an approximate five by 10 foot area in the planter to a depth of 1.5 feet bgs. Calculated volume in this area is approximately 2.8 cubic yards.

Location SB071

Sample location SB071 was located in a planter area adjacent to the east side of the Wood Shop building. Lead impacted soil above 80 mg/kg is limited to an approximate five by five foot area in the planter to a depth of 2.5 feet bgs. Calculated volume in this area is approximately 2.3 cubic yards.

Location SB072

Sample location SB072 was located in a central planter / tree well that is surrounded by a cement paved area adjacent to the south side of the Wood Shop building. Lead impacted soil above 80 mg/kg is limited to an approximate five by five foot area in the planter / tree well to a depth of 1.5 feet bgs. Calculated volume in this area is approximately 1.4 cubic yards.

Location SB094

Sample location SB094 was located in an asphalt paved walkway area adjacent to the east side of the Parent & Family Center building. Lead impacted soil above 80 mg/kg is limited to an approximate three by five foot area to a depth of 2.5 feet bgs. Calculated volume in this area is approximately 1.4 cubic yards.

Location SB100

Sample location SB100 was located in a grass field area adjacent to the north side of the band room building. Lead impacted soil above 80 mg/kg is limited to an approximate five by five foot area to a depth of 1.5 feet bgs. Calculated volume in this area is approximately 1.4 cubic yards.

Location SB102

Sample location SB102 was located in an asphalt paved storage area adjacent to the south side of the Band room building. Arsenic impacted soil above 12 mg/kg is limited to an approximate five by 10 foot area to a depth of 2.5 feet bgs and a 16 by 14 foot area to a depth of 1.5 feet bgs. Calculated volume in this area is approximately 14.3 cubic yards.

Location SB109

Sample location SB109 was located in a landscaped area adjacent to the north side of the Wood Shop building. Lead impacted soil above 80 mg/kg is limited to an approximate five by five foot area to a depth of 2.5 feet bgs. Calculated volume in this area is approximately 2.3 cubic yards.

Locations SB114, SB115, and SB119

The extent of lead (SB114 and SB115) and arsenic (SB119) impacts has yet to be determined at locations SB114, SB115, and SB119. Step-out sampling will be conducted at these locations and the data included in a supplemental report. For this report, lead impacted soil above 80 mg/kg was assumed to be limited to an approximate five by five foot area to a depth of 1.5 feet bgs at location SB114 and SB115. Arsenic impacted soil above 12 mg/kg was assumed to be limited to an approximate five by five foot area to a depth of 2.5 feet bgs at location SB119.

7.3 Bulk Sample Results

Results for the sample of debris ash from the incinerator are summarized on Table 8. Benzoic acid was the only SVOCs detected at 4,300 ug/kg. Elevated metal detections included arsenic (116 mg/kg), lead (655 mg/kg), nickel (1,040 mg/kg) and vanadium (1,670 mg/kg). Additional waste analysis for future disposal determination was performed for arsenic, lead, and nickel. Of these compounds, only nickel concentrations were above the soluble regulatory level, which would classify this material as a California hazardous waste.

7.4 Quality Assurance / Quality Control

Quality assurance and quality control (QA/QC) measures which included field and laboratory procedures were conducted during the assessment to ensure the data is accurate and representative of site conditions.

Field QA/QC procedures included using new latex/gloves during sample collection and handling, standard 3-stage decontamination of drilling / sampling equipment, and appropriate labeling, logging, and preservation of sample immediately after collection. Duplicate (colocated) sample analysis was also performed as part of QA/QC requirements.

Standard Chain-of-Custody was maintained on all samples. All samples were analyzed by the appropriate EPA testing method as specified.

Laboratory QA/QC included analysis of surrogates, laboratory blanks, matrix spike and matrix spike duplicate as appropriate. All samples were analyzed within applicable holding times and all laboratory control standards were within acceptable limits.

Laboratory data was compiled into tabular form for assessment and verification. The laboratory data was considered to meet the data quality objectives (DQOs) for accuracy, precision, completeness, representativeness, and comparability. Laboratory equipment blank sample results were within acceptable limits and/or laboratory criteria.

8.0 HUMAN HEALTH SCREENING EVAULATION

The following section discusses potential risks to human health and the environment posed by COPC identified during this investigation. Since COPC detected on site are commonly found in shallow soil in developed areas and are those commonly managed at school sites (i.e., arsenic, lead and OCP), this screening is limited to comparing results to DTSC Recommended Screening Levels (DTSC-RSL) or US EPA Regional Screening Levels (EPA-RSLs) for residential soil to determine potential health hazard posed by potential exposure on site. Since RSLs tend to utilize very conservative input values such as exposure duration and toxicity values, screening levels generally over-estimate health risks and hazards. Consequently, if site concentrations are below respective RSLs, no further risk assessment or investigation is typically warranted.

Metals are naturally occurring in soil and in the case of arsenic, naturally occurring arsenic background concentrations has been established as 12 mg/kg for Los Angeles Unified School Sites (DTSC, 2017). Additionally, the DTSC has established a lead screening level of 80 mg/kg for residential soil to be protective of students, staff and faculty (DTSC/HERO, 2016). As a result of the established and DTSC approved screening levels of 12 mg/kg for arsenic and 80 mg/kg for lead in resident soil, the screening health risks and hazards for arsenic and lead will not be quantified.

8.1 Exposure Pathways and Media of Concern

Potential exposure routes include dermal contact, incidental ingestion, and inhalation of soil and soil particulates which could possibly occur during school outdoor activities or during future construction. Because elevated concentrations are limited to shallow soil and groundwater occurs at around 130-150 feet, groundwater pathway was judged to be incomplete and was not evaluated as a potential exposure pathway.

8.2 Potentially Exposed Receptor Populations

Population potentially exposed to COPC in shallow soil includes students, faculty and staff, and future construction workers. In order to provide a conservative risk evaluation, sampling results are compared to residential screening levels. Since residential screening levels assume 24-hour a day exposure, these values will over-estimate potential hazard students, staff, and construction workers would be potentially exposed for a far shorter duration in a single day.

8.3 Human Health Screening

Human health screening was completed to evaluate potential risk posed by COPC identified in site soil. Results of the evaluation are summarized in Table 9. Using the maximum OCP concentrations detected, the calculated cumulative cancer risk is 1.74E-06 and the calculated cumulative hazard index is 3.38E-02.

Cumulative cancer risk of 1.74E-06 slightly exceeds the generally accepted departure value of 1.0E-06. Cumulative hazard index of 3.38E-02 is well below the typical departure value of 1.

Screening levels for arsenic, lead and OCPs were based on DTSC guidelines for school sites as outlined below. Toxicity values for other metals and OCPs of concern were based on.

Chemicals of Concern	Action Level (mg/kg)
Arsenic	12
Lead	80
Chlordane	0.44
DDT	1.9
DDE	2.0
DDD	2.3
Dieldrin	0.034
Endrin	19
Heptachlor Epoxide	0.070

The lead and OCP screening levels are residential values established by DTSC Human and Ecological Risk Office (HERO) Human Health Risk Assessment (HHRA) Note Number 3 (June 2016). The arsenic screening value has been established by DTSC as an upper-bound background concentration for school sites in Southern California.

8.4 Ecological Screening Evaluation

North Hollywood High School is located within a completely developed residential/commercial area in the City of Los Angeles. Native wildlife or habitat does not exist within the school campus or immediate area; therefore, an ecological assessment was not conducted.

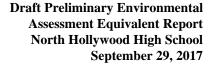
9.0 COMMUNITY OUTREACH

This report will be made available for public review. The following describes the community notification activities for this preliminary environmental assessment of the North Hollywood High School Comprehensive Modernization Project.

• A one-page public notice was prepared in accordance with the established DTSC guidelines for informing the community at and surrounding the school of the PEA field investigation. Prior to implementation of the PEA field investigation, the public notice was distributed to residents and businesses within the line-of-sight of the school campus. Additionally, copies of the notices were mailed to all students who attended the school prior to field activities and copies were provided to school faculty and staff. The public notice provided written notification in English and Spanish. Copies of the public notices are included in Appendix C. The public notices provided contact information for anyone in the community who may have questions or concerns regarding the project. No additional public participation activities were identified for the project with the exception of the 30-day Public Comment period for the Draft PEA Report.

The Draft PEA will be finalized after public comments from the 30-Day Public Comment Period are incorporated in the report.

10.0 CONCLUSIONS, SUMMARY, AND RECOMMENDATION


10.1 Conclusions

Conclusions derived from this investigation include:

- No VOCs were detected in any of the soil vapor samples collected from the Site.
- No TPH, VOCs, SVOCs, PAHS, or PCBs were detected in any of the analyzed samples.
- OCPs detected at the site included chlordane (alpha, gamma, total), 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, dieldrin, endrin aldehyde, and heptachlor epoxide, however, none of these constituents were detected above screening levels.
- Metals concentrations were within typical background ranges for California soils with the exception of lead and arsenic concentrations in a few isolated locations.
 - Lead was initially detected above 80 mg/kg at 13 soil sample locations (SB043, SB051, SB065, SB067, SB068, SB069, SB071, SB072 SB094, SB100, SB109, SB114, and SB115) at concentrations ranging from 81.4 to 357 mg/kg.
 - Arsenic was initially detected above 12 mg/kg in four soil sample locations (SB041, SB061, SB102, SB119) at concentrations ranging from 15.7 to 54.5 mg/kg.
- Additional sampling was completed at sample locations with arsenic or lead concentrations above screening levels which defined the limits of arsenic or lead impacts.
- A total of 71 cubic yards of soil impacted with lead or arsenic should be removed as part of the modernization project.
- A bulk sample was collected of residual ash/debris in the school's incinerator which is no longer in use. Elevated metal detected included arsenic (116 mg/kg), lead (655 mg/kg), nickel (1,040 mg/kg) and vanadium (1,670 mg/kg). Of these compounds, only nickel concentrations were above the soluble regulatory level, which classifies this material as a California hazardous waste.

10.2 Summary

A preliminary assessment identified RECs at the school which included possible usage of solvents or petroleum-products, historical cesspits/dry wells/septic tanks, a grease pit, a clarifier, as well as lead-based paint, arsenic, and/or OCPs in shallow soils.

These RECs were investigated with soil and soil vapor sampling. No significant subsurface impacts were identified other than some areas with arsenic and lead above screening levels.

10.3 Recommendation

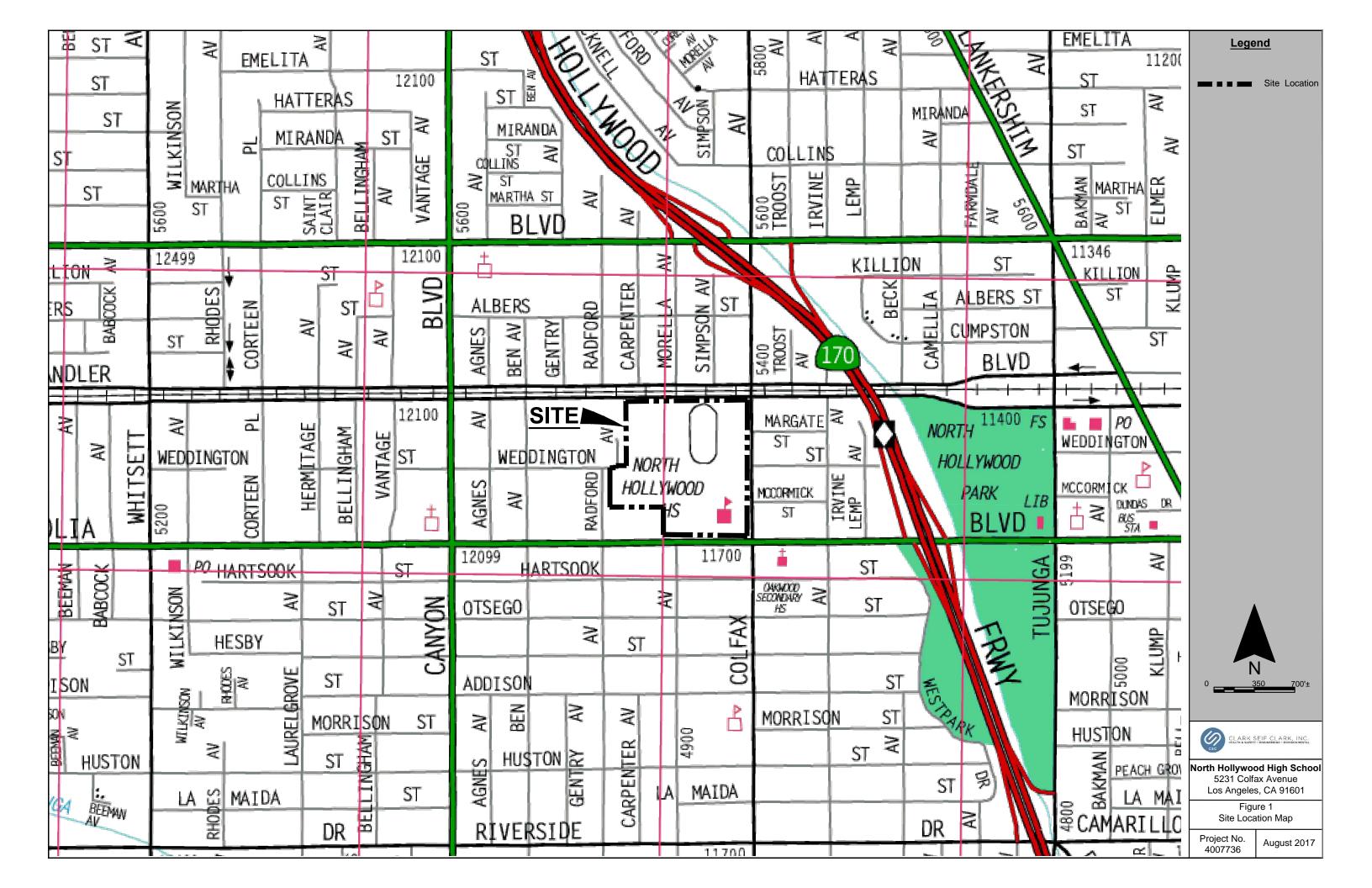
Based on the findings of this investigation, the following recommendation is proposed:

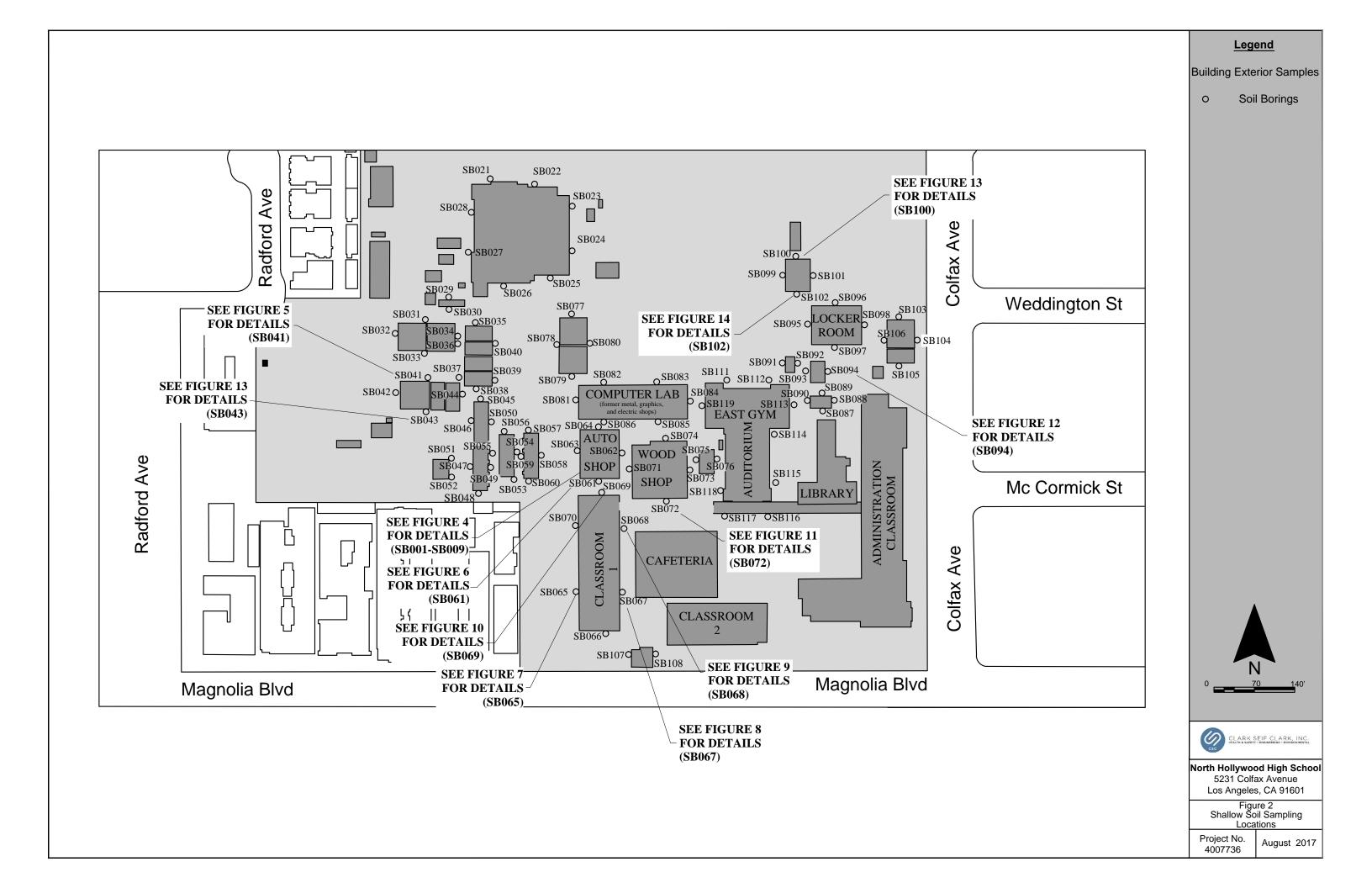
• Those areas identified with lead or arsenic concentrations above action levels should be remediated as part of the Comprehensive Modernization Project planned at the school. A Removal Action Work Plan (RAW) should be prepared to describe the procedure for remediating soil with elevated lead or arsenic concentrations to screening levels.

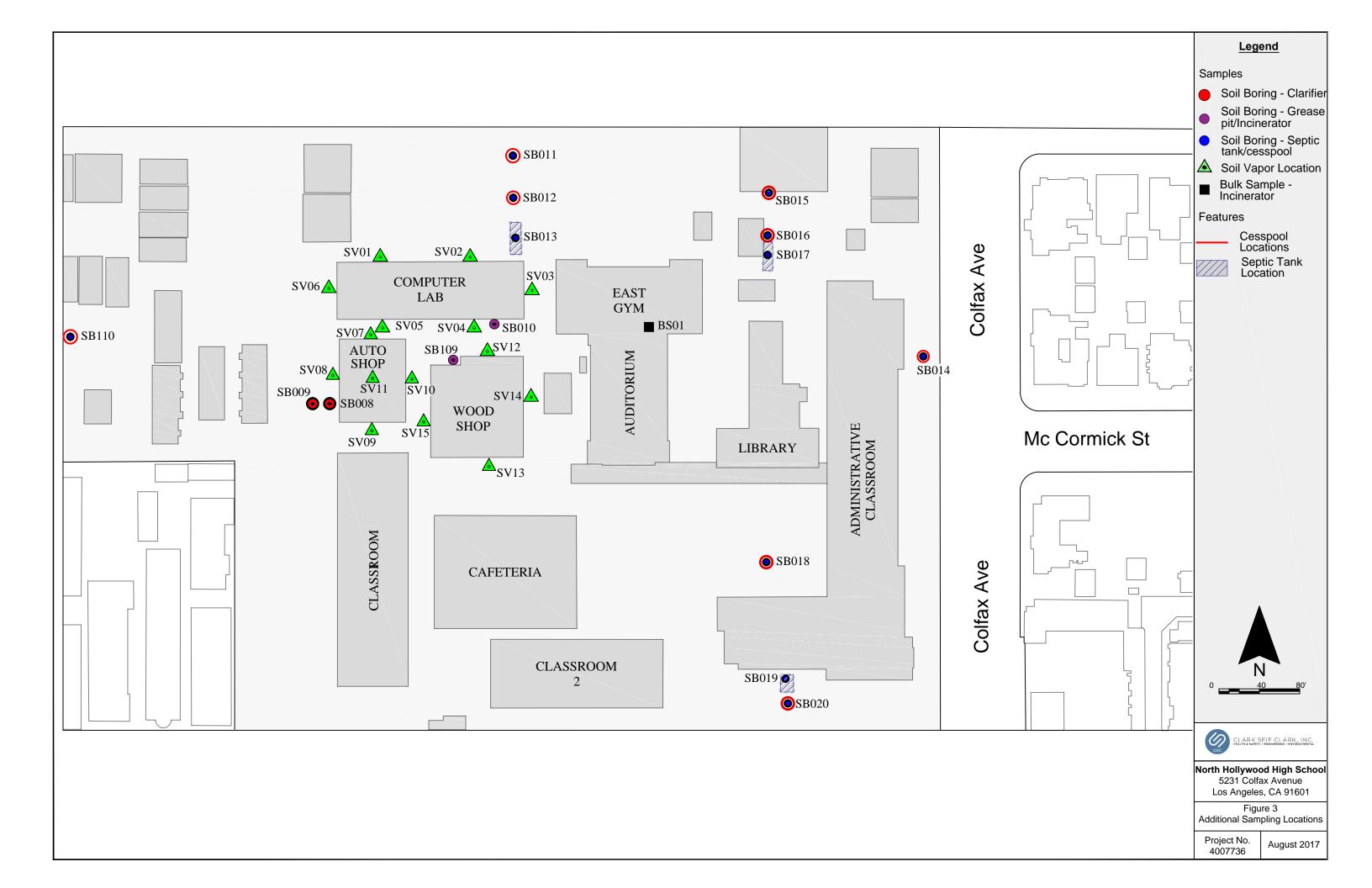
11.0 REFERENCES

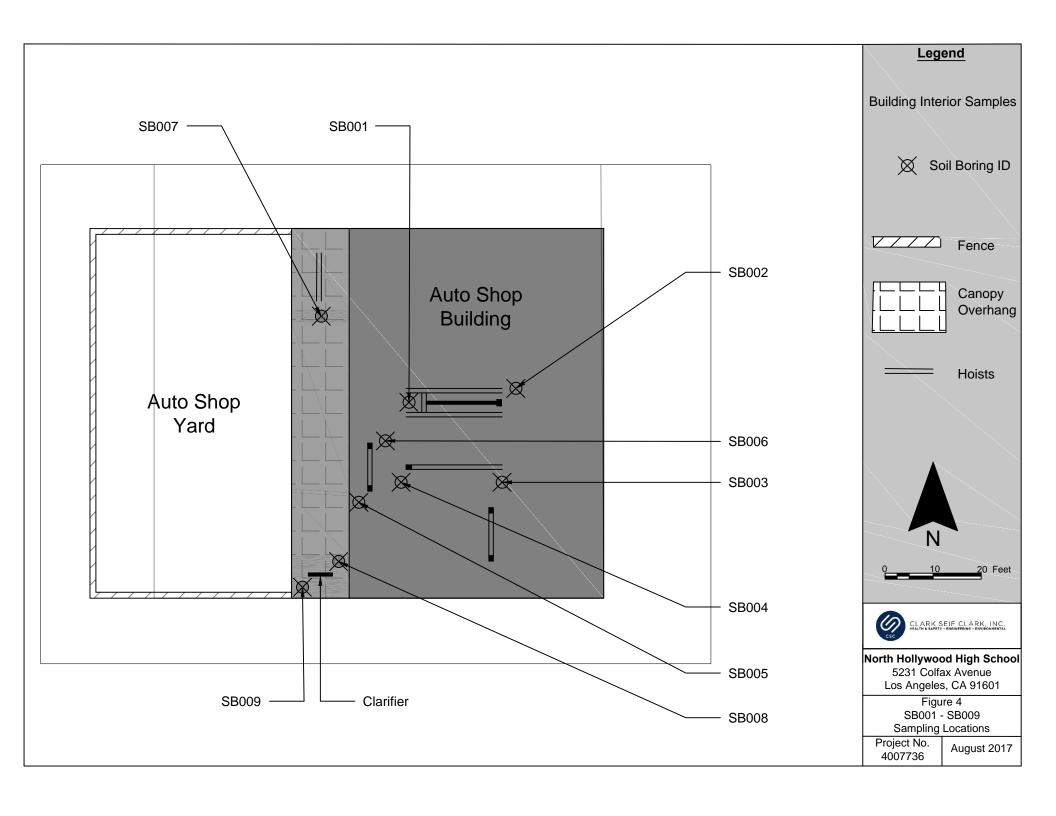
DTSC, Arsenic Strategies, Determination of Arsenic Remediation, Development of Arsenic Cleanup Goals for Proposed and Existing School Sites: Department of Toxic Substances Control, Sacramento, CA, March 21, 2007.

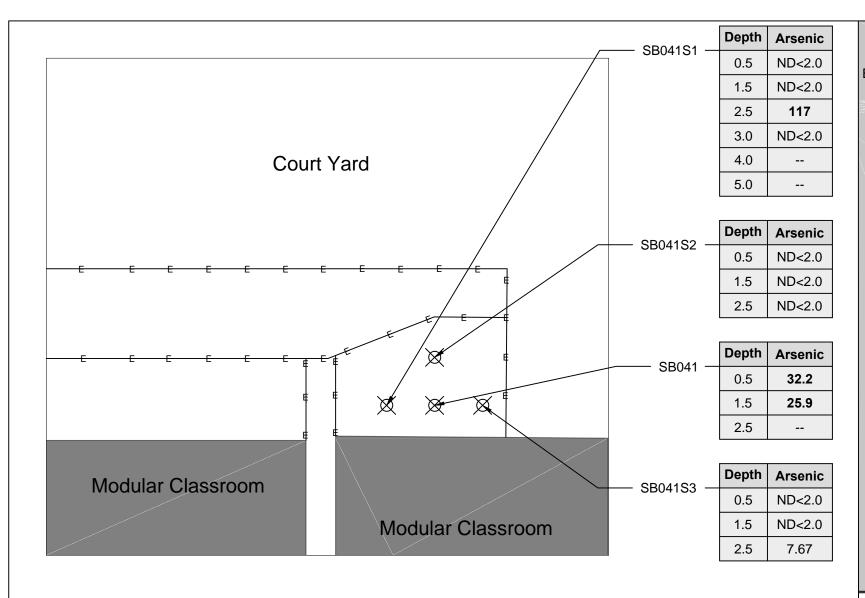
DTSC/HERO, Human Health Risk Assessment (HHRA) Note Number 3, DTSC-Modified Screening Levels (DTSC-SLs), January 2016,


DTSC/RWQCB, Advisory for Active Soil Gas Investigations, July 2015.


DTSC Preliminary Endangerment Assessment Guidance Manual, January 1994 (Revised 2015)

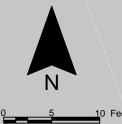

E2 Managetech, *Phase I Environmental Site Assessment Report*, North Hollywood High School, 5231 Colfax Avenue, North Hollywood, CA 91601, August 25, 2016


E2 Managetech, *PEA Equivalent Sampling Locations*, North Hollywood High School, 5231 Colfax Avenue, North Hollywood, CA 91601, August 24, 2016



Building Exterior Samples

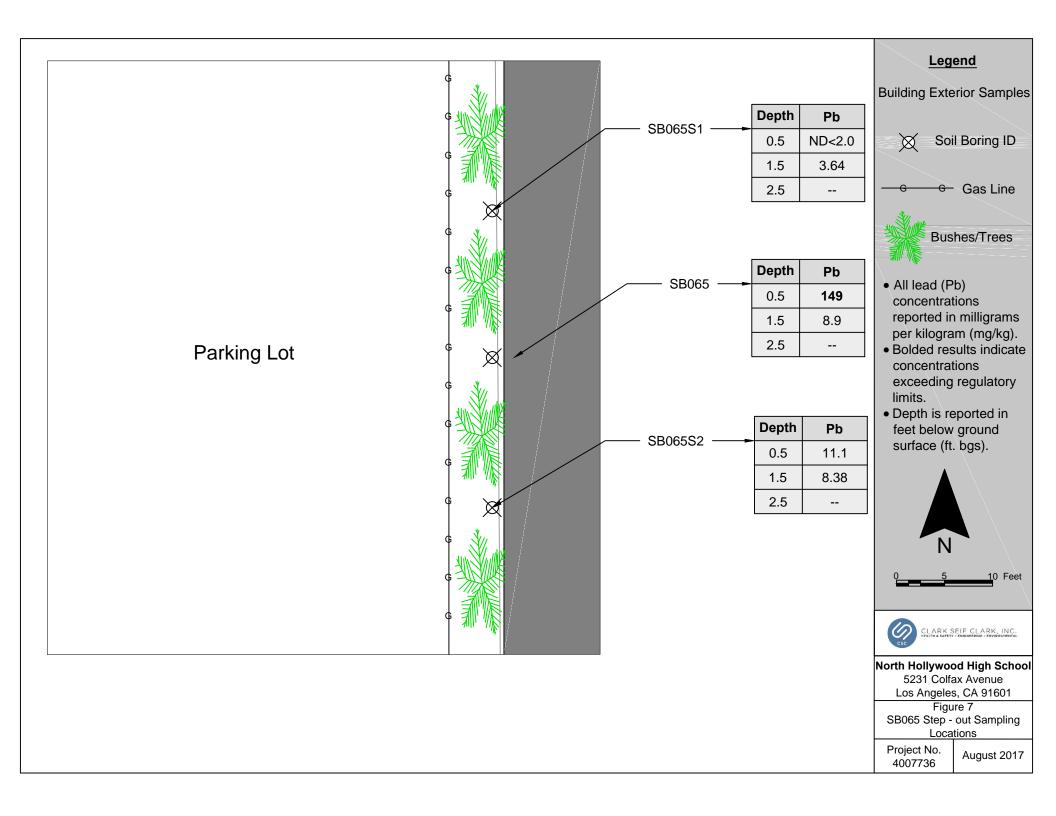
Soil Boring ID



Proposed Soil Boring to 5ft bgs

_ Electrical Line

- All arsenic concentrations reported in milligrams per kilogram (mg/kg).
- Bolded results indicate concentrations exceeding regulatory limits.
- Depth is reported in feet below ground surface (ft. bgs).


North Hollywood High School

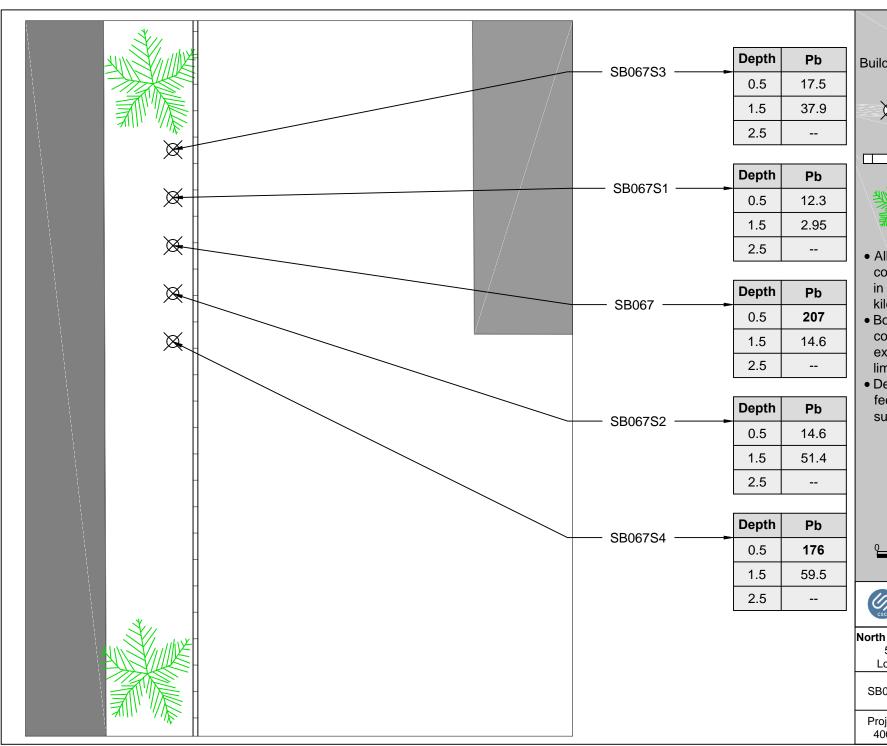

5231 Colfax Avenue Los Angeles, CA 91601

Figure 5 SB041 Step - out Sampling Locations

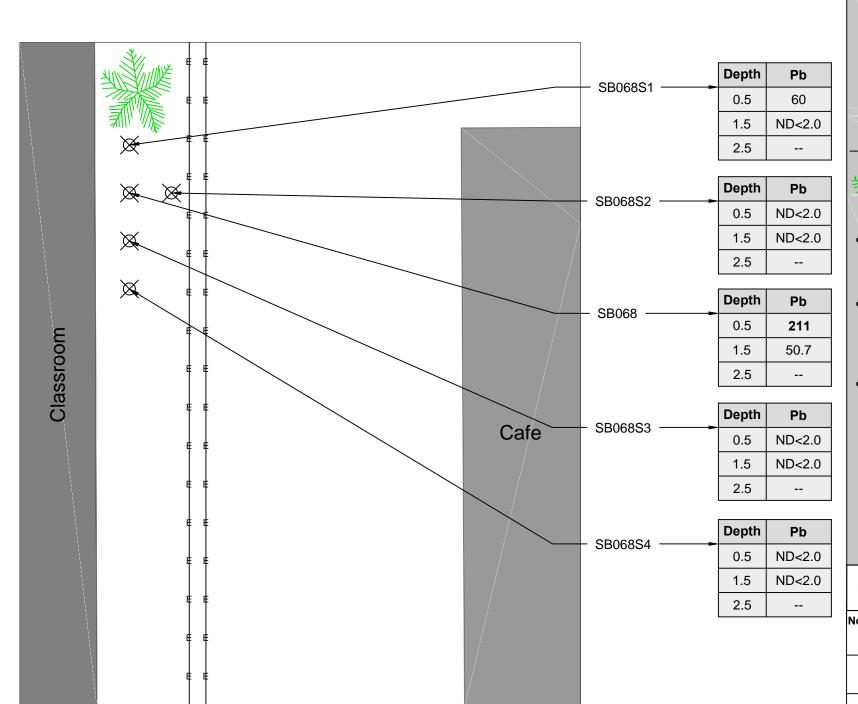
Project No. 4007736

Building Exterior Samples

Soil Boring ID

Bushes/Trees

- All lead (Pb)
 concentrations reported
 in milligrams per
 kilogram (mg/kg).
- Bolded results indicate concentrations exceeding regulatory limits.
- Depth is reported in feet below ground surface (ft. bgs).



North Hollywood High School 5231 Colfax Avenue

5231 Colfax Avenue Los Angeles, CA 91601 Figure 8

SB067 Step - out Sampling Locations

Project No. 4007736

Building Exterior Samples

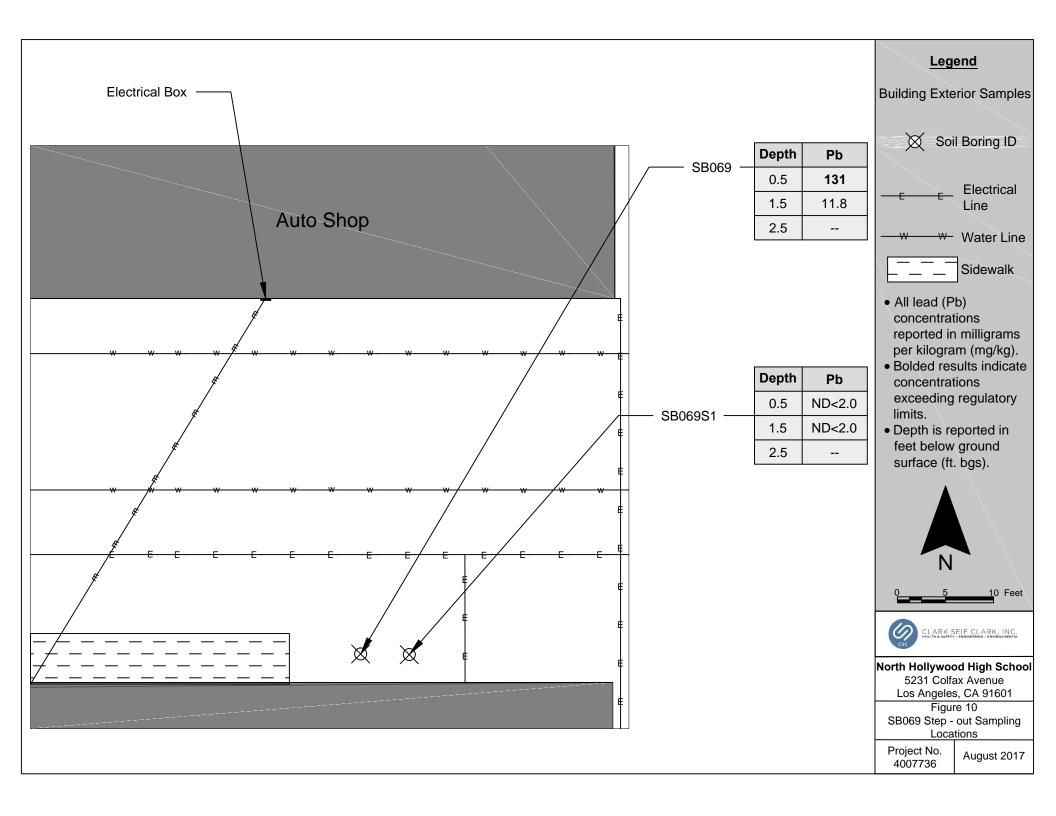
Soil Boring ID

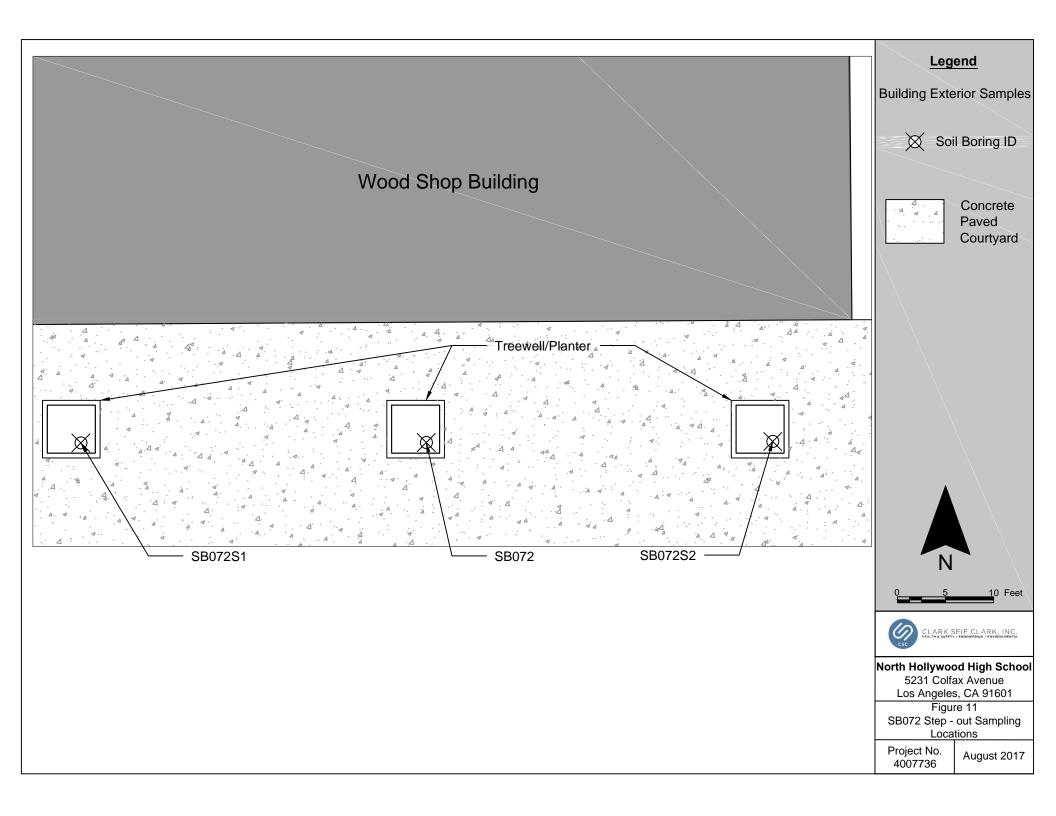
Electrical

Line

Bushes/Trees

- All lead (Pb) concentrations reported in milligrams per kilogram (mg/kg).
- Bolded results indicate concentrations exceeding regulatory limits.
- Depth is reported in feet below ground surface (ft. bgs).


5 10 Feet



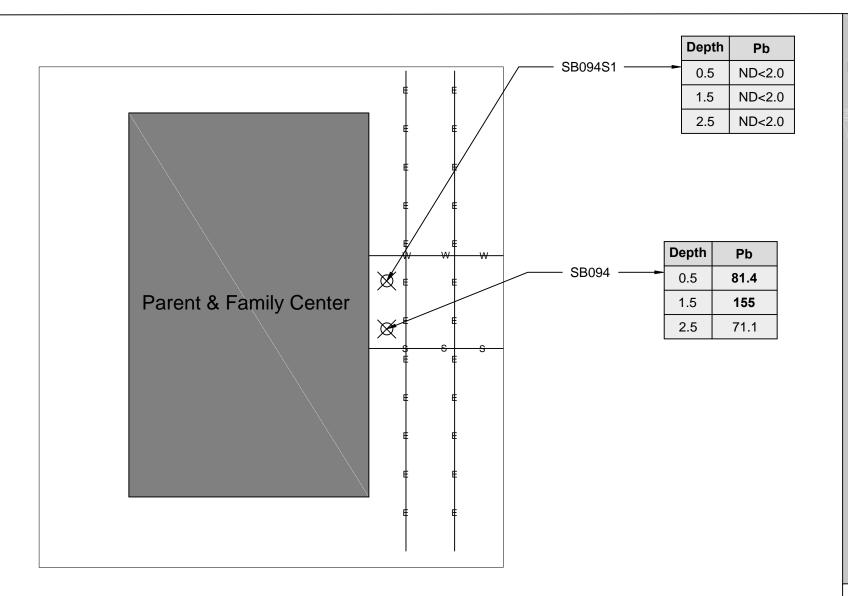
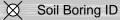
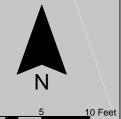

North Hollywood High School 5231 Colfax Avenue Los Angeles, CA 91601

Figure 9 SB068 Step - out Sampling Locations


Project No. 4007736

Building Exterior Samples

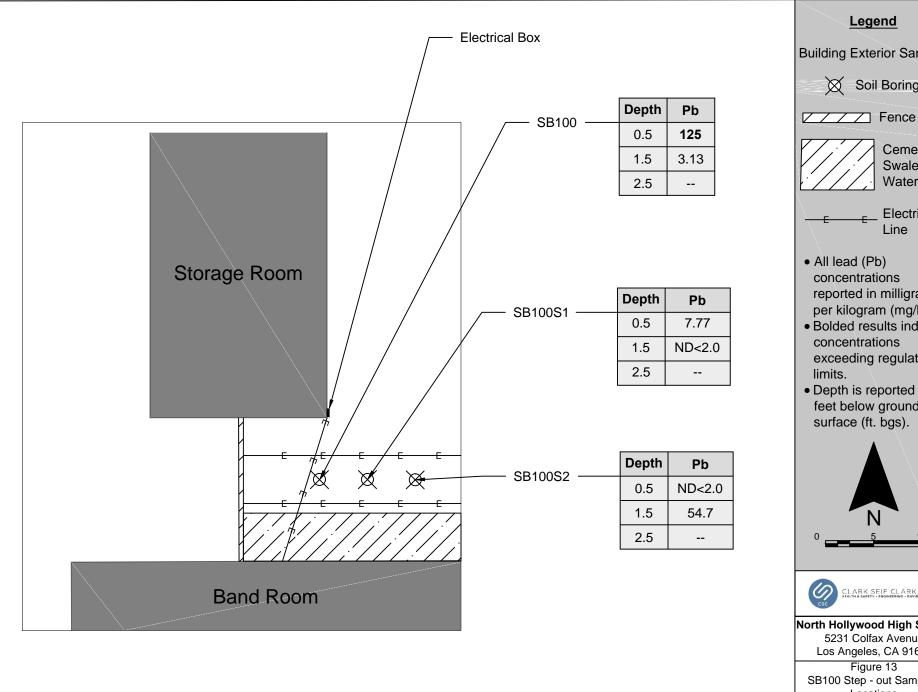


Electrical Line

── Water Line

s s Sewer Line

- All lead (Pb)
 concentrations reported
 in milligrams per
 kilogram (mg/kg)
- Bolded results indicate concentrations exceeding regulatory limits.
- Depth is reported in feet below ground surface (ft. bgs).



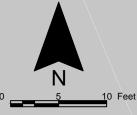
North Hollywood High School

5231 Colfax Avenue Los Angeles, CA 91601

Figure 12
SB094 Step - out Sampling
Locations

Project No. 4007736

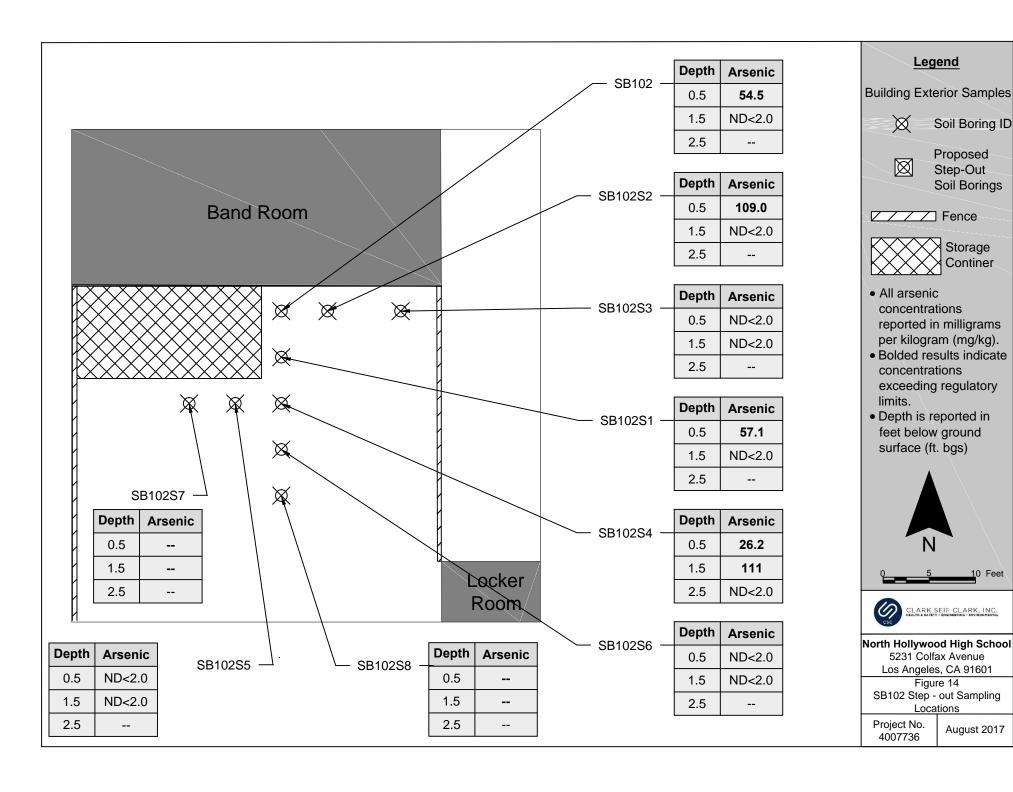
Building Exterior Samples

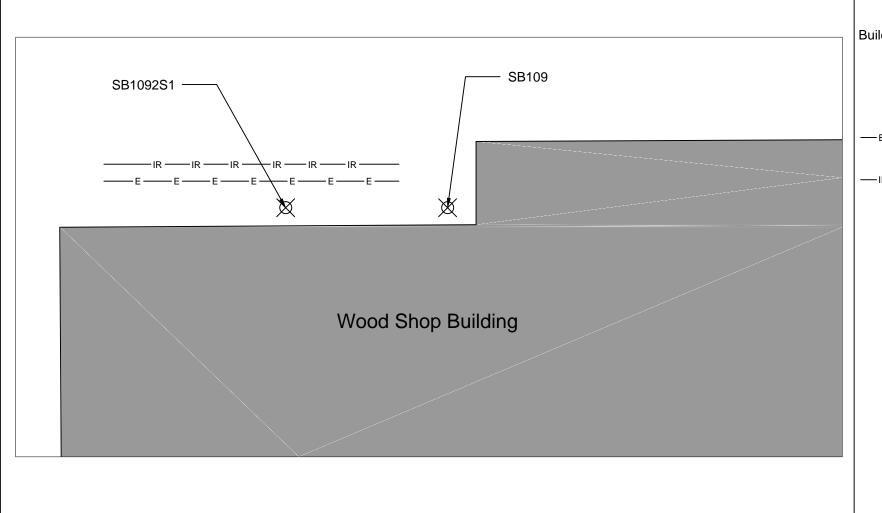

Soil Boring ID

Cement Swale / Water Line

Electrical Line

- All lead (Pb) concentrations reported in milligrams per kilogram (mg/kg).
- Bolded results indicate concentrations exceeding regulatory
- Depth is reported in feet below ground surface (ft. bgs).

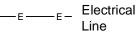



North Hollywood High School

5231 Colfax Avenue Los Angeles, CA 91601

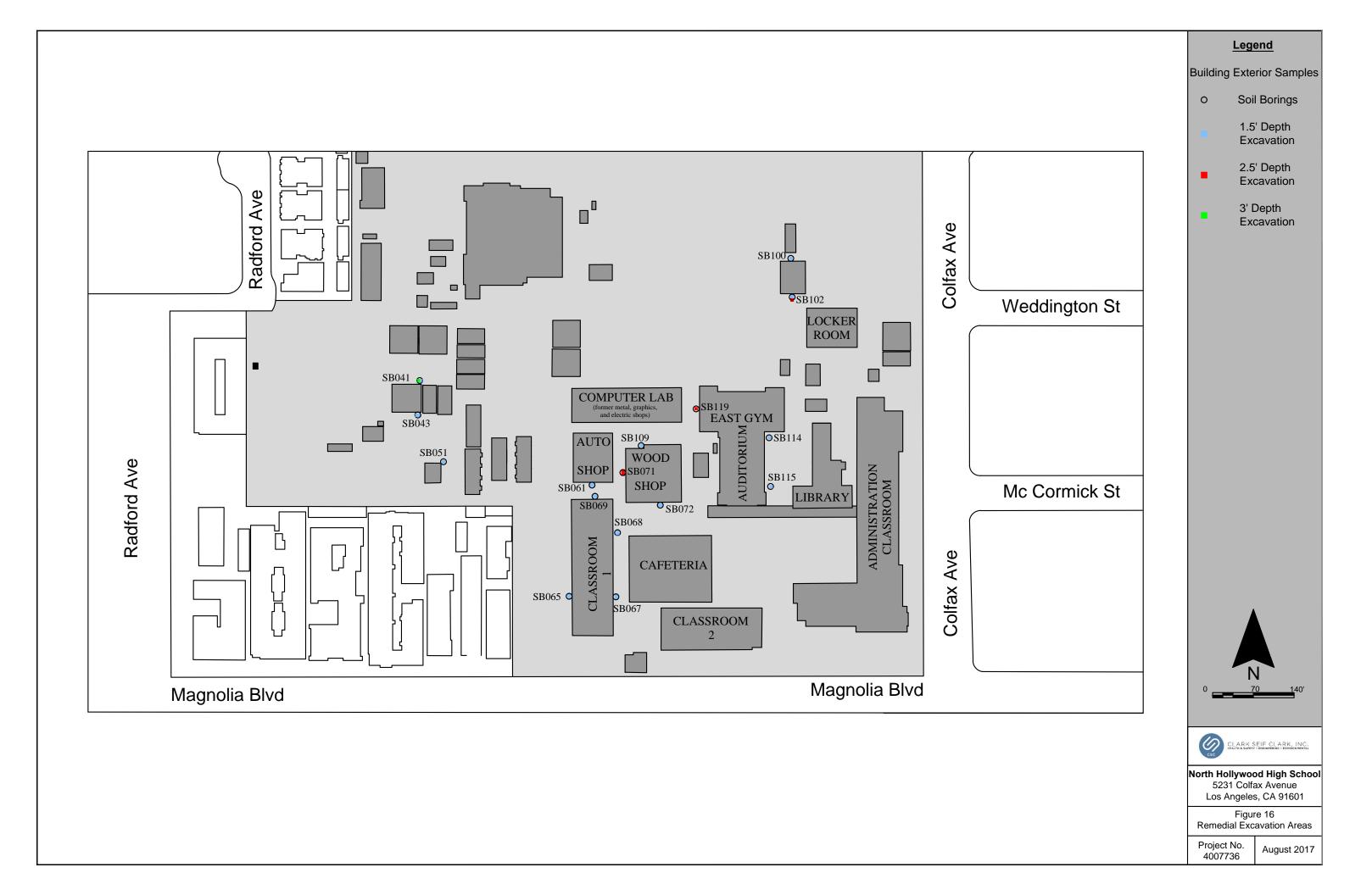
Figure 13 SB100 Step - out Sampling Locations

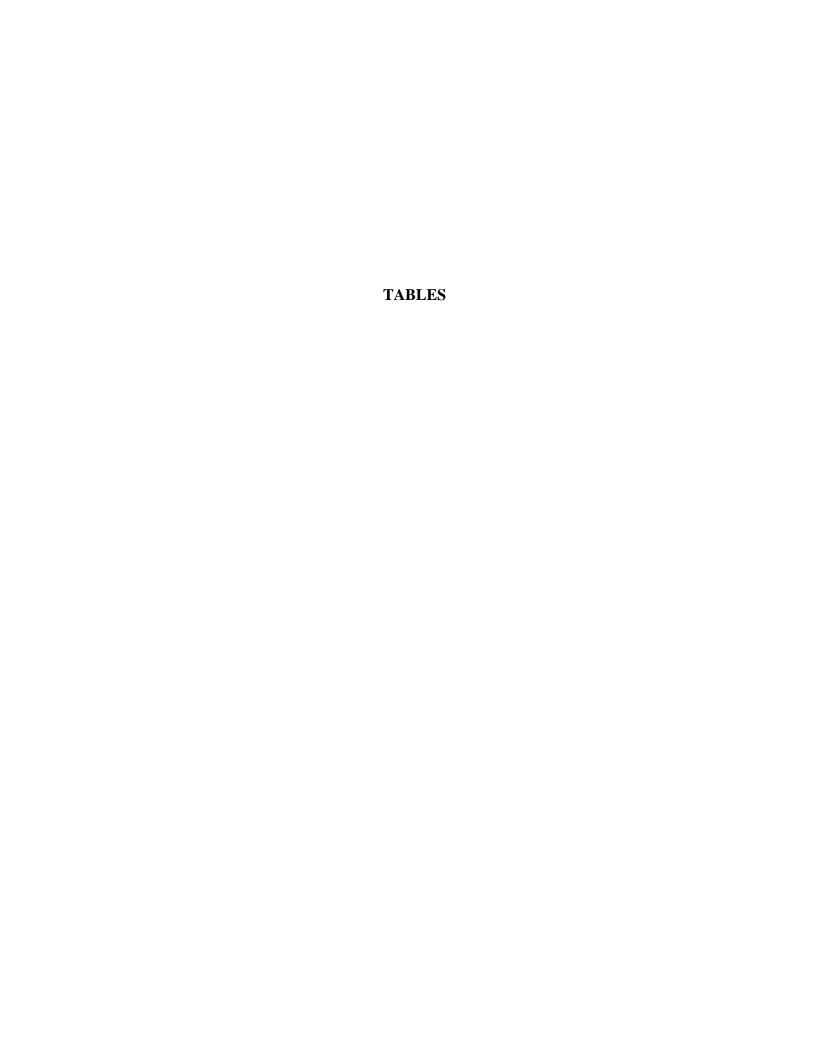
Project No. 4007736



Building Exterior Samples

-IR ----IR - Irrigation Line




North Hollywood High School

5231 Colfax Avenue Los Angeles, CA 91601

Figure 15 SB109 Step - out Sampling Locations

Project No. 4007736

TABLE 1 SUMMARY OF SOIL VAPOR ANALYTICAL DATA NORTH HOLLYWOOD HIGH SCHOOL 5231 COLFAX AVENUE LOS ANGELES CA

Sample Collection Date	Sample ID	Volatile Organic Compounds by EPA Method 8260
Sample Collection Date	Sample 1D	micrograms per liter (ug/L)
	SV1-5	ND
	SV1-15	ND
	SV2-5	ND
	SV2-15	ND
	SV3-5	ND
	SV3-15	ND
November 10, 2017	SV4-5	ND
November 19, 2017 —	SV4-15	ND
	SV5-5	ND
	SV5-15	ND
	SV6-5	ND
	SV6-15	ND
	SV7-5	ND
	SV7-15	ND
	SV8-5	ND
	SV8-15	ND
	SV9-5	ND
	SV9-15	ND
	SV10-5	ND
Navarahar 20, 2017	SV10-15	ND
November 20, 2017 —	SV11-5	ND
	SV11-15	ND
	SV12-5	ND
	SV12-15	ND
	SV13-5	ND
	SV13-15	ND
Newspher 40, 2017	SV14-5	ND
November 19, 2017 —	SV14-15	ND
Newspher 20, 2017	SV15-5	ND
November 20, 2017 —	SV15-15	ND

Notes:

ND = Not detected

TABLE 2

SUMMARY OF TPH, VOCs, PCBs, PAHs, AND SVOCs ANALYTICAL DATA

NORTH HOLLYWOOD HIGH SCHOOL 5231 COLFAX AVENUE LOS ANGELES CA

Date	Sample ID	Total Petroleum Hydrocarbons by EPA Method 8015M	Volatile Organic Compounds by EPA Method 8260B	Polychlorinated Biphenyls by EPA Method 8081	Poly-Aromatic Hydrocarbons by EPA Method 8270C	Semi-Volatile Organio Compounds by EPA Method 8070C					
		mg/kg		micrograms per kilogram (ug/kg)							
	SB001-10	ND		ND <50							
November 19, 2016	SB001-15	ND		ND <50							
	SB001-20										
	SB002-10	ND		ND <50							
December 10, 2016	SB002-15										
	SB002-20			-							
D	SB003-10	ND		ND <50							
December 10, 2016	SB003-15										
	SB003-20			 ND <50							
December 10, 2016	SB004-10 SB004-15	ND 									
December 10, 2010	SB004-13										
	SB005-10	ND		ND <50							
December 10, 2016	SB005-15										
_ 00000. 10, 2010	SB005-20										
	SB006-10	ND		ND <50							
December 10, 2016	SB006-15										
,	SB006-20										
	SB007-10	ND		ND <50							
December 10, 2016	SB007-15										
	SB007-20										
December 10, 2016	SB008-4	ND	ND	ND <50							
December 10, 2010	SB008-8	ND	ND	ND <50							
December 10, 2016	SB009-4	ND	ND	ND <50							
December 10, 2010	SB009-8	ND	ND	ND <50							
November 19, 2016	SB010-10	ND	ND								
11010111501 13, 2010	SB010-15	ND	ND								
November 20, 2016	SB011-10	ND	ND		ND						
	SB011-15	ND	ND		ND						
November 20, 2016	SB012-10	ND	ND		ND						
,	SB012-15	ND	ND		ND						
November 20, 2016	SB013-10	ND	ND		ND						
	SB013-15	ND ND	ND ND		ND						
5 1 2 2015	SB014-10 SB014-15	ND ND	ND ND		ND ND						
December 3, 2016											
	SB014-15 Dup	ND	ND		ND						
	SB015-5	ND	ND		ND						
	SB015-10	ND	ND		ND						
	SB015-15 SB015-20	ND ND	ND ND		ND ND						
December 3, 2016	SB015-25	ND ND	ND ND		ND ND						
	SB015-30	ND ND	ND ND		ND ND						
	SB015-35	ND	ND	==	ND						
	SB015-40	ND	ND		ND						
	SB016-5	ND	ND		ND						
	SB016-10	ND	ND		ND						
	SB016-15	ND	ND		ND						
	SB016-15 Dup	ND	ND		ND						
December 3, 2016	SB016-20	ND	ND	-	ND	-					
	SB016-25	ND	ND		ND						
	SB016-30	ND	ND		ND						
	SB016-35	ND	ND	1	ND	-					
	SB016-40	ND	ND		ND						

TABLE 2
SUMMARY OF TPH, VOCs, PCBs, PAHs, AND SVOCs ANALYTICAL DATA
NORTH HOLLYWOOD HIGH SCHOOL 5231 COLFAX AVENUE LOS ANGELES CA

Date	Sample ID	Total Petroleum Hydrocarbons by EPA Method 8015M	Volatile Organic Compounds by EPA Method 8260B	Polychlorinated Biphenyls by EPA Method 8081	Poly-Aromatic Hydrocarbons by EPA Method 8270C	Semi-Volatile Organic Compounds by EPA Method 8070C			
		mg/kg		micrograms per	kilogram (ug/kg)	kilogram (ug/kg)			
	SB017-5	ND	ND		ND				
	SB017-10	ND	ND	-	ND				
	SB017-10 Dup	ND	ND		ND				
	SB017-15	ND	ND		ND				
December 3, 2016	SB017-20	ND	ND		ND				
	SB017-25	ND	ND		ND				
	SB017-30	ND	ND		ND				
	SB017-35	ND	ND		ND				
	SB017-40	ND	ND		ND				
	SB018-5	ND	ND		ND				
	SB018-10	ND	ND		ND				
	SB018-15	ND	ND		ND				
December 10, 2016	SB018-20	ND	ND		ND				
December 10, 2010	SB018-25	ND	ND		ND				
	SB018-30	ND	ND		ND				
	SB018-35	ND	ND		ND				
	SB018-40	ND	ND		ND				
	SB019-5	ND	ND		ND				
	SB019-10	ND	ND		ND				
	SB019-15	ND	ND		ND				
	SB019-20	ND	ND		ND				
December 3, 2016	SB019-25	ND	ND		ND				
	SB019-30	ND	ND		ND				
	SB019-30 Dup	ND	ND		ND				
	SB019-35	ND	ND		ND				
	SB019-40	ND	ND		ND				
	SB020-5	ND	ND		ND				
	SB020-10	ND	ND		ND				
	SB020-15	ND	ND		ND				
December 3, 2016	SB020-20	ND	ND		ND				
2000111001 5) 2010	SB020-25	ND	ND		ND				
	SB020-30	ND	ND		ND				
	SB020-35	ND	ND		ND				
	SB020-40	ND	ND		ND				
	SB109-0.5					ND			
November 5, 2016	SB109-1.5					ND			
	SB109-2.5					ND			
	SB110-5	ND	ND		ND				
	SB110-10	ND	ND		ND				
	SB110-15	ND	ND		ND				
December 10, 2016	SB110-20	ND	ND		ND				
	SB110-25	ND	ND		ND				
	SB110-30	ND	ND		ND				
	SB110-35	ND	ND		ND				
	SB110-40	ND	ND		ND				

Notes:

ND = Not detected

-- = Not analyzed

TABLE 3

SUMMARY OF ORGANOCHLORINE PESTICIDES ANALYTICAL DATA

NORTH HOLLYWOOD HIGH SCHOOL 5231 COLFAX AVENUE LOS ANGELES CA

Sample Collection Date	Sample ID	Chlordane (alpha)	Chlordane (gamma)	Chlordane (Total)	4,4'-DDD microgr	4,4'-DDE ams per kilog	4,4'-DDT ram (ug/kg)	Dieldrin	Endrin	Endrin aldehyde	Heptachlor epoxide	Dilution Factor
Screening L	evels	440	440	440	2,300	2,000	1,900	34	19,000		70	
	SB021-0.5	ND <2.0	ND <2.0	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	1
November 5, 2016	SB021-1.5 SB021-2.5		-	0								
	SB021-2.5 SB022-0.5	ND <4.0	ND <4.0	ND <4.0	ND <4.0	58.8	20.2	ND <4.0	16.7	ND <4.0	ND <4.0	2
November 5, 2016	SB022-1.5		-									-
	SB022-2.5		-									-
November 6, 2016	SB023-0.5 SB023-1.5	ND <4.0	ND <4.0	ND <4.0	ND <4.0	7.56	14.7	ND <4.0	8.13	ND <4.0	ND <4.0	2
11070111001 0, 2010	SB023-2.5	-	-			-	-	-	-	-		-
	SB024-0.5	ND <2.0	ND <2.0	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND <2.0	1
November 6, 2016	SB024-1.5 SB024-2.5		-					-				-
	SB025-0.5	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	1
November 6, 2016	SB025-1.5		1			-				-		-
	SB025-2.5	ND -2.0	ND -2.0	 ND -2 0		 ND -2.0		 ND -2.0		ND -2.0	 ND -2 0	1
November 6, 2016	SB026-0.5 SB026-1.5	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	1.41 J	ND <2.0	ND <2.0	ND <2.0	ND <2.0	
	SB026-2.5		-									-
November 6, 2016	SB027-0.5 SB027-1.5	ND <2.0	ND <2.0	ND <2.0	ND <2.0	4.51	7.61	ND <2.0	2.6	ND <2.0	ND <2.0	1
November 6, 2016	SB027-2.5		-							-		
	SB028-0.5	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	2
November 6, 2016	SB028-1.5											-
	SB028-2.5 SB029-0.5								-			-
November 20, 2016	SB029-1.5		-	-					-		-	-
	SB029-2.5	2.07			NO.5				NP 7			-
	SB030-0.5 SB030-1.5	2.07	1.59 J	3.66	ND <2.0	9.91	5.97	4.13	ND <2.0	ND <2.0	ND <2.0	1
November 20, 2016	SB030-2.5		-						-		-	
140Ve111Det 20, 2010	SB030-0.5 Dup	6.21 J	ND <10	10.6	ND <10	6.72 J	ND <10	ND <10	ND <10	ND <10	ND <10	5
-	SB030-1.5 Dup SB030-2.5 Dup		-									-
	SB031-0.5	4.03	2.95	6.98	ND <2.0	8.34	14.1	ND <2.0	ND <2.0	ND <2.0	ND <2.0	1
November 20, 2016	SB031-1.5		-									
	SB031-2.5 SB032-0.5	 ND <2.0	 ND <2.0	 ND <2.0	 ND	1.01 J	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	1
November 20, 2016	SB032-0.5			IND <2.0								-
	SB032-2.5		-			-						-
November 20, 2016	SB033-0.5	6.76	4.62	11.4	ND <2.0	4.42	2.63	ND <2.0	ND <2.0	ND <2.0	ND <2.0	1
57050. 20, 2010	SB033-1.5 SB033-2.5											
	SB034-0.5	ND <4.0	ND <4.0	3.59 J	ND <4.0	3.44 J	3.18 J	ND <4.0	ND <4.0	ND <4.0	ND <4.0	2
November 20, 2016	SB034-1.5											-
	SB034-2.5 SB035-0.5	 ND <20	 ND <20	 ND <20	ND <20	ND <20	 ND <20	 ND <20	 ND <20	 ND <20	ND <20	10
November 20, 2016	SB035-1.5		-	-		-				-	-	-
	SB035-2.5											
November 20, 2016	SB036-0.5 SB036-1.5	ND <20	ND <20 	ND <20	ND <20	ND <20	ND <20	ND <20	ND <20 	ND <20	ND <20 	10
	SB036-2.5		-			-						
	SB037-0.5	ND <20	ND <20	ND <20	ND <20	ND <20	ND <20	ND <20	ND <20	ND <20	ND <20	10
November 20, 2016	SB037-1.5 SB037-2.5		-									-
	SB038-0.5	ND <2.0	1.38 J	2.09	ND <2.0	1.47 J	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	1
November 5, 2016	SB038-1.5		-			-						
	SB038-2.5 SB039-0.5	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	1
November 6, 2016	SB039-0.5	ND <2.0	ND <2.0	ND \2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	IND <2.0	ND <2.0	ND \2.0	
	SB039-2.5		-			-						-
November 6, 2016	SB040-0.5 SB040-1.5	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	1
November 6, 2016	SB040-2.5		-			-				-		-
	SB041-0.5	10.1	8.03	18.1	3.36 J	30	52.4	ND <4.0	ND <4.0	ND <4.0	ND <4.0	2
November 20, 2016	SB041-1.5 SB041-2.5		-			-						-
	SB041-2.5 SB042-0.5	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	1
November 20, 2016	SB042-1.5		-									
	SB042-2.5 SB043-0.5	ND <3.0	AND -3 O	 ND <2.0	 ND <2.0	ND <2.0	 ND <2.0	 ND <2.0	ND <2.0	ND <2.0	ND <2.0	1
-	SB043-1.5	ND <2.0	ND <2.0	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	-
November 19, 2016	SB043-2.5					-				-		
110101111111111111111111111111111111111	SB043-0.5 Dup	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	1
ļ	SB043-1.5 Dup SB043-2.5 Dup	-	-				-	-	-	-		-
	SB044-0.5	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	1
November 5, 2016	SB044-1.5	-	-							-		-
	SB044-2.5 SB045-0.5	 ND <2.0	 ND <2.0	 ND <2.0	ND <2.0	ND <2.0	 ND <2.0	ND <2.0	ND <2.0	 ND <2.0	ND <2.0	1
November 5, 2016	SB045-1.5		-			-	-			-		
	SB045-2.5	 ND -2.0				 ND -2.0		 ND -2.0	ND +2.0	 ND -2.0		
November 19, 2016	SB046-0.5 SB046-1.5	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	1
	SB046-2.5		-							-		-
	SB047-0.5	ND <2.0	ND <2.0	ND <2.0	ND <2.0	6.85	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	1
November 19, 2016	SB047-1.5 SB047-2.5		-									
	SB047-2.5 SB048-0.5	29.8	30.3	60.1	ND <2.0	ND <2.0	1.84 J	ND <2.0	ND <2.0	ND <2.0	ND <2.0	1
November 19, 2016	SB048-1.5											
	SB048-2.5	 ND <2.0	 ND <2.0	 ND <2.0		16.0	16.4	ND -2.0		 ND <2.0	 ND <2.0	- 1
November 6, 2016	SB049-0.5 SB049-1.5	ND <2.0	ND <2.0	ND <2.0	2.24	16.8	16.4	ND <2.0	2.63	ND <2.0	ND <2.0	1
	SB049-2.5					-				-		
	CDOFO O F	ND <2.0	ND <2.0	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND < 2.0	1
November 6, 2016	SB050-0.5 SB050-1.5	ND <2.0	IND 12.0					-				_

TABLE 3

SUMMARY OF ORGANOCHLORINE PESTICIDES ANALYTICAL DATA

NORTH HOLLYWOOD HIGH SCHOOL 5231 COLFAX AVENUE LOS ANGELES CA

Carrala Callantina Data	CI- ID	Chlordane (alpha)	Chlordane (gamma)	Chlordane (Total)	4,4'-DDD	4,4'-DDE	4,4'-DDT	Dieldrin	Endrin	Endrin aldehyde	Heptachlor epoxide	
Sample Collection Date	Sample ID				microgi	rams per kilog	ram (ug/kg)					Dilution Factor
Screening L		440	440	440	2,300	2,000	1,900	34	19,000		70	
November 19, 2016	SB051-0.5 SB051-1.5	ND <2.0	ND <2.0	ND <2.0	ND <2.0	13.2	10.2	ND <2.0	ND <2.0	ND <2.0	ND <2.0	1
,	SB051-2.5		-	-								-
November 19, 2016	SB052-0.5 SB052-1.5	ND <2.0	ND <2.0	ND <2.0	ND <2.0	4.69	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	1
	SB052-2.5			-			-				-	-
-	SB053-0.5 SB053-1.5	ND <10 	ND <10	ND <10 	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10 	5
November 19, 2016	SB053-2.5											
-	SB053-0.5 Dup SB053-1.5 Dup	ND <2.0	ND <2.0	ND <2.0	ND <2.0	4.69	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	1
	SB053-2.5 Dup	 ND -440							 ND -44.0			2
November 20, 2016	SB054-0.5 SB0541-1.5	ND <4.0	ND <4.0	ND <4.0 	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	
	SB054-2.5 SB055-0.5	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	1
November 6, 2016	SB055-1.5	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	
	SB055-2.5 SB056-0.5	 ND <10	 ND <10	 ND <10	 ND <10	 ND <10	 ND <10	 ND <10	 ND <10	 ND <10	 ND <10	5
November 6, 2016	SB056-0.5 SB056-1.5	ND <10	ND <10	ND <10	 ND < 10	 ND < 10	 ND < 10	 ND <10	 ND < 10	 ND <10	ND <10	
	SB056-2.5 SB057-0.5	 ND <4.0	 ND <4.0	 ND <4.0	 ND <4.0	 ND <4.0	 ND <4.0	 ND <4.0	 ND <4.0	 ND <4.0	 ND <4.0	2
November 6, 2016	SB057-0.5 SB057-1.5	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	
	SB057-2.5 SB058-0.5	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	1
November 20, 2016	SB058-0.5	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	
	SB058-2.5	 ND <2.0		 ND -2.0			 ND -2.0	 ND -2.0	 ND -2.0	 ND <2.0	 ND -2.0	
November 20, 2016	SB059-0.5 SB059-1.5	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	1
•	SB059-2.5											
November 20, 2016	SB060-0.5 SB060-1.5	ND <10 	ND <10 	ND <10 	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10 	5
, , , , ,	SB060-2.5			-								
November 19, 2016	SB061-0.5 SB061-1.5	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	2.56 J	ND <4.0	ND <4.0	ND <4.0	ND <4.0	2
	SB061-2.5											
	SB062-0.5 SB062-1.5	ND <2.0	ND <2.0	ND <2.0	ND <2.0	7.11	6.8	ND <2.0	3.66	ND <2.0	ND <2.0	1
November 0, 2010	SB062-2.5		-	-								-
November 19, 2016	SB063-0.5 SB063-1.5	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND <2.0	1
November 15, 2010	SB063-2.5		-	-								
	SB064-0.5	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	1
November 6, 2016	SB064-1.5 SB064-2.5		-	-								-
	SB065-0.5	5.13	5.2	10.3	ND <2.0	ND <2.0	5.82	1.45 J	ND <2.0	ND <2.0	ND <2.0	1
November 6, 2016	SB065-1.5 SB065-2.5		-									
	SB066-0.5	2.18	1.88 J	4.06	ND < 2.0	ND <2.0	8.47	2.1	ND <2.0	ND <2.0	ND <2.0	1
November 6, 2016	SB066-1.5 SB066-2.5		-				-	-	-			-
	SB067-0.5	39.4	55.5	94.9	33.3	1,140	22.5	ND <4.0	ND <4.0	ND <4.0	ND <4.0	2
November 6, 2016	SB067-1.5 SB067-2.5		-				-		-			-
	SB068-0.5	53.9	52.6	107	7.86	367	30.9	6.27	7.51	1.07 J	1.95 J	1
November 6, 2016	SB068-1.5 SB068-2.5		-									
_	SB069-0.5	16.4	26.4	42.8	26.6	535	146	5.6	48.8	1.81 J	ND <2.0	1
November 6, 2016	SB069-1.5 SB069-2.5		-									
_	SB070-0.5	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	5
November 19, 2016	SB070-1.5 SB070-2.5		-									
	SB070-2.5	ND <2.0	1.07 J	1.82 J	ND <2.0	2.17	4.40	1.97 J	ND <2.0	ND <2.0	ND <2.0	1
November 6, 2016	SB071-1.5											-
	SB071-2.5 SB072-0.5	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	1
November 6, 2016	SB072-1.5 SB072-2.5		-	**						**	**	
	SB072-2.5 SB073-0.5	 ND <4.0	 ND <4.0	 ND <4.0	 ND <4.0	 ND <4.0	 ND <4.0	ND <4.0	 ND <4.0	 ND <4.0	 ND <4.0	2
November 6, 2016	SB073-1.5		-									
	SB073-2.5 SB074-0.5	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	ND <2.0	ND <2.0	 ND <2.0	1
November 6, 2016	SB074-1.5		-				-	-				
	SB074-2.5 SB075-0.5	 ND <4.0	 ND <4.0	 ND <4.0	 ND <4.0	 ND <4.0	 ND <4.0	 ND <4.0	 ND <4.0	 ND <4.0	 ND <4.0	2
November 6, 2016	SB075-1.5			**								-
	SB075-2.5 SB076-0.5	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	1
November 6, 2016	SB076-1.5		-	**								
	SB076-2.5 SB077-0.5	 ND <10	 ND <10	8.62 J	 ND <10	6.52 J	8.72 J	 ND <10	 ND <10	 ND <10	 ND <10	5
November 6, 2016	SB077-1.5		-	**								-
	SB077-2.5 SB078-0.5	 ND <10	 ND <10	 ND <10	 ND <10	 ND <10	 ND <10	 ND <10	 ND <10	 ND <10	 ND <10	5
November 6, 2016	SB078-1.5			**								-
	SB078-2.5 SB079-0.5	 ND <4.0	 ND <4.0	 ND <4.0	 ND <4.0	 ND <4.0	 ND <4.0	 ND <4.0	 ND <4.0	 ND <4.0	 ND <4.0	2
November 6, 2016	SB079-0.5 SB079-1.5	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	
	SB079-2.5											
November 6, 2016	SB080-0.5 SB080-1.5	6.31	5.11	11.4	ND <4.0	ND <4.0	2.50 J	ND <4.0	ND <4.0	ND <4.0	ND <4.0	2
-,	SB080-2.5		-	**								-
November 6, 2016	SB081-0.5 SB081-1.5	ND <10.0	ND <10.0	ND <10.0	ND <10.0	ND <10.0	ND <10.0	ND <10.0	ND <10.0	ND <10.0	ND <10.0	5
	SB081-2.5		-	-								-

TABLE 3

SUMMARY OF ORGANOCHLORINE PESTICIDES ANALYTICAL DATA

NORTH HOLLYWOOD HIGH SCHOOL 5231 COLFAX AVENUE LOS ANGELES CA

Sample Collection Date	Sample ID	Chlordane (alpha)	Chlordane (gamma)	Chlordane (Total)	4,4'-DDD microgr	4,4'-DDE ams per kilog	4,4'-DDT	Dieldrin	Endrin	Endrin aldehyde	Heptachlor epoxide	Dilution Factor
Screening L	evels	440	440	440	2,300	2,000	1.900	34	19,000		70	Distriction raction
Screening 2	SB082-0.5	4.09	5.35	9.44	ND <4.0	5.79	ND <4.0	2.53 J	ND <4.0	ND <4.0	ND <4.0	2
November 6, 2016	SB082-1.5		-						-			
	SB082-2.5 SB083-0.5	ND <10	 ND <10	 ND <10	 ND <10	 ND <10	 ND <10	 ND <10	 ND <10	 ND <10	 ND <10	5
November 6, 2016	SB083-1.5	-	-									
	SB083-2.5 SB084-0.5	ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	1
November 6, 2016	SB084-1.5							**				-
	SB084-2.5 SB085-0.5	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	ND <2.0	 ND <2.0	1
November 6, 2016	SB085-1.5								-			-
	SB085-2.5 SB086-0.5	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	1
November 6, 2016	SB086-1.5		ND <2.0	ND 42.0								-
	SB086-2.5 SB087-0.5	 ND <20	 ND <20	 ND <20	 ND <20	 ND <20	 ND <20	 ND <20	 ND <20	 ND <20	 ND <20	10
November 5, 2016	SB087-0.5	ND \20	ND <20	ND <20						ND <20		
	SB087-2.5 SB088-0.5	59.7	71.2	131	 ND <10	 ND <10	 ND <10	 ND <10	 ND <10	 ND <10	 ND <10	5
November 5, 2016	SB088-0.5 SB088-1.5	59.7	71.2		 ND < 10	 ND <10	 ND < 10	 ND < 10	 ND <10	ND <10	ND <10	
	SB088-2.5											-
November 5, 2016	SB089-0.5 SB089-1.5	ND <10	ND <10	ND <10	12.6 J	ND 	17.4 J	10.1 J	ND <10	ND <10	ND <10 	5
·	SB089-2.5		-						-			
November 5, 2016	SB090-0.5 SB090-1.5	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10 	5
,	SB090-2.5	-										-
November 5, 2016	SB091-0.5 SB091-1.5	1.82 J	2.36	4.18	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	1
	SB091-2.5	-	-									
November 5, 2016	SB092-0.5 SB092-1.5	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	ND <4.0	2
November 5, 2010	SB092-2.5		-						-			
November 5, 2016	SB093-0.5	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	5
November 3, 2010	SB093-1.5 SB093-2.5	-	-				-	-	-			-
	SB094-0.5	45.5	52.9	98.4	ND <20	ND <20	16.4 J	ND <20	ND <20	ND <20	ND <20	10
November 5, 2016	SB094-1.5 SB094-2.5								-			
	SB095-0.5	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	5
November 5, 2016	SB095-1.5 SB095-2.5	-										-
	SB096-0.5	ND <20	ND <20	ND <20	ND <20	ND <20	ND <20	ND <20	ND <20	ND <20	ND <20	10
November 5, 2016	SB096-1.5 SB096-2.5	-	-									
	SB097-0.5	ND <20	ND <20	ND <20	ND <20	ND <20	ND <20	ND <20	ND <20	ND <20	ND <20	10
November 5, 2016	SB097-1.5 SB097-2.5	-	-									-
	SB098-0.5	8.31 J	9.73 J	18	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	5
November 19, 2016	SB098-1.5 SB098-2.5	-										-
	SB099-0.5	ND <20	ND <20	ND <20	ND <20	ND <20	ND <20	ND <20	ND <20	ND <20	ND <20	10
November 5, 2016	SB099-1.5 SB099-2.5		-						-			
	SB100-0.5	8.46	8.81	16.9	1.14 J	8.08	8.2	1.62 J	1.89 J	1.66 J	ND <2.0	1
November 5, 2016	SB100-1.5								-			-
	SB100-2.5 SB101-0.5	ND <2.0	ND <2.0	ND <2.0	7.99	213	5.41	ND <2.0	ND <2.0	ND <2.0	ND <2.0	1
November 5, 2016	SB101-1.5	-	-									
	SB101-2.5 SB102-0.5	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	1
November 5, 2016	SB102-1.5								-			
	SB102-2.5 SB103-0.5	 ND <20	 ND <20	 ND <20	 ND <20	 ND <20	 ND <20	 ND <20	 ND <20	 ND <20	 ND <20	10
November 5, 2016	SB103-1.5						-	**	-			
	SB103-2.5 SB104-0.5	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	1
November 5, 2016	SB104-1.5								-			-
	SB104-2.5 SB105-0.5	116	116	232	2.29	3.12	4.87	3.42	 ND <2.0	 ND <2.0	17.5	17.5
November 5, 2016	SB105-1.5	-			-			**				-
	SB105-2.5 SB106-0.5	ND <10	 ND <10	 ND <10	 ND <10	 ND <10	 ND <10	 ND <10	 ND <10	 ND <10	 ND <10	5
November 5, 2016	SB106-1.5											-
	SB106-2.5 SB107-0.5	 ND <2.0	 ND <2.0	 ND <2.0	 ND <2.0	6.82	 1.44 J	3.89	 ND <2.0	 ND <2.0	 ND <2.0	1
November 5, 2016	SB107-1.5	ND <2.0	ND <2.0	ND <2.0	ND < 2.0	0.82	1.44 J	3.89	ND ₹2.0	ND <2.0	ND <2.0	
	SB107-2.5 SB108-0.5	4.03	3.68	7.71	 ND <2.0	34.8	 1.79 J	2.14	 ND <2.0	 ND <2.0	 ND <2.0	1
November 5, 2016	SB108-0.5 SB108-1.5	4.03	3.68	7./1	ND <2.0	34.8	1./9 J	2.14	ND <2.0	ND <2.0	ND <2.0	1
	SB108-2.5 SB109-0.5	 ND <10	 ND <10	 ND <10	 ND <10	 ND <10		 ND <10		 ND <10	 ND <10	
November 5, 2016	SB109-0.5 SB109-1.5	ND <10	ND <10 	ND <10 	ND <10	ND <10	ND <10	ND <10 	ND <10	ND <10	ND <10 	5
	SB109-2.5	 ND -2.0	-	 ND -2.0	 ND -2.0				-			
July 20, 2017	SB111-0.5 SB111-1.5	ND <2.0 ND <2.0	ND <2.0 ND <2.0	ND <2.0 ND <2.0	ND <2.0 ND <2.0	ND <2.0 ND <2.0	ND <2.0 ND <2.0	ND <2.0 ND <2.0	ND <2.0 ND <2.0	ND <2.0 ND <2.0	ND <2.0 ND <2.0	1
, .,	SB111-2.5	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND <2.0	1
	SB112-0.5 SB112-1.5	ND <2.0 ND <2.0	ND <2.0 ND <2.0	ND <2.0 ND <2.0	ND <2.0 ND <2.0	ND <2.0 ND <2.0	ND <2.0 ND <2.0	ND <2.0 ND <2.0	ND <2.0 ND <2.0	ND <2.0 ND <2.0	ND <2.0 ND <2.0	1
July 20, 2017		ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND <2.0	1
July 20, 2017	SB112-2.5						ND -2.0	ND < 2.0	ND <2.0	ND <2.0	ND < 2.0	1
	SB113-0.5	ND <2.0 ND <2.0	ND <2.0 ND <2.0	ND <2.0 ND <2.0	ND < 2.0 ND < 2.0	ND <2.0	ND <2.0 ND <2.0					1
July 20, 2017 July 20, 2017	SB113-0.5 SB113-1.5 SB113-2.5	ND <2.0 ND <2.0	ND <2.0 ND <2.0	ND <2.0 ND <2.0	ND <2.0 ND <2.0	ND <2.0 ND <2.0	ND <2.0 ND <2.0	ND <2.0 ND <2.0	ND <2.0 ND <2.0	ND <2.0 ND <2.0	ND <2.0 ND <2.0	1 1
	SB113-0.5 SB113-1.5	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	

TABLE 3 SUMMARY OF ORGANOCHLORINE PESTICIDES ANALYTICAL DATA NORTH HOLLYWOOD HIGH SCHOOL 5231 COLFAX AVENUE LOS ANGELES CA

Sample Collection Date	Commiss ID	Chlordane (alpha)	Chlordane (gamma)	Chlordane (Total)	4,4'-DDD	4,4'-DDE	4,4'-DDT	Dieldrin	Endrin	Endrin aldehyde	Heptachlor epoxide	
Sample Collection Date	Sample ID		micrograms per kilogram (ug/kg)									
Screening	Levels	440	440	440	2,300	2,000	1,900	34	19,000		70	
	SB115-0.5	2.66	3.62	6.28	2.93	3.42	28.6	1.08 J	ND <2.0	ND <2.0	ND <2.0	1
July 20, 2017	SB115-1.5	ND <2.0	ND < 2.0	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND < 2.0	1
	SB115-2.5	ND <2.0	ND < 2.0	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND < 2.0	1
	SB116-0.5	17.8	21.2	39	ND < 2.0	2.64	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND < 2.0	1
July 20, 2017	SB116-1.5	2.11	2.65	4.76	ND < 2.0	ND <2.0	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND < 2.0	1
	SB116-2.5	3.96	5.78	9.74	ND < 2.0	1.37 J	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND < 2.0	1
	SB117-0.5	ND < 2.0	ND < 2.0	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND < 2.0	1
July 20, 2017	SB117-1.5	ND <2.0	ND < 2.0	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND < 2.0	1
	SB117-2.5	ND <2.0	ND < 2.0	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND < 2.0	1
	SB118-0.5	1.08 J	1.48 J	2.56	ND < 2.0	1.71 J	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND < 2.0	1
July 20, 2017	SB118-1.5	ND <2.0	ND < 2.0	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND < 2.0	1
	SB118-2.5	ND < 2.0	ND < 2.0	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND < 2.0	1
	SB119-0.5	1.20 J	1.86 J	3.06	ND < 2.0	ND <2.0	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND < 2.0	1
July 20, 2017	SB119-1.5	ND <2.0	ND < 2.0	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND <2.0	1
	SB119-2.5	ND < 2.0	ND < 2.0	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND < 2.0	ND <2.0	ND <2.0	ND < 2.0	1

Notes:

ND = Not Detected
--- = Not Analyzed
Dup = duplicate

Detection Limit = Equivalent to Practical Quantization Limit

TABLE 4

SUMMARY OF ARSENIC, LEAD AND PCBs ANALYTICAL DATA

NORTH HOLLYWOOD HIGH SCHOOL 5231 COLFAX AVENUE LOS ANGELES CA

		EPA Metho	od 6010B	
Sample Collection Date	Sample ID	Arsenic	Lead	Dilution
		milligrams per ki	logram (mg/kg)	Factor
Detectio	n Limit	2.0	2.0	
Site Screeni	ng Levels	12*	80**	1
	SB021-0.5	ND <2.0	ND <2.0	1
November 5, 2016	SB021-1.5			
	SB021-2.5 SB022-0.5	 ND <2.0	 ND <2.0	1
November 5, 2016	SB022-0.5	ND <2.0		
	SB022-2.5			
November 6, 2016	SB023-0.5 SB023-1.5	ND <2.0	ND <2.0	1
November 0, 2010	SB023-2.5			
	SB024-0.5	ND <2.0	ND <2.0	1
November 6, 2016	SB024-1.5 SB024-2.5			
	SB025-0.5	ND <2.0	ND <2.0	1
November 6, 2016	SB025-1.5			
	SB025-2.5	 ND <2.0	 7.67	
November 6, 2016	SB026-0.5 SB026-1.5	ND <2.0	7.67	1
,	SB026-2.5			
	SB027-0.5	ND <2.0	11.3	1
November 6, 2016	SB027-1.5 SB027-2.5			
	SB028-0.5	ND <2.0	2.09	1
November 6, 2016	SB028-1.5			
	SB028-2.5 SB029-0.5	 ND <2.0	 29.7	1
November 20, 2016	SB029-1.5	ND \2.0		
	SB029-2.5			
	SB030-0.5	ND <2.0	3.59	1
,	SB030-1.5 SB030-2.5			
November 20, 2016	SB030-0.5 Dup	ND <2.0	3.3	
	SB030-1.5 Dup			
	SB030-2.5 Dup SB031-0.5	ND <2.0	ND <2.0	1
November 20, 2016	SB031-1.5			
	SB031-2.5			
November 20, 2016	SB032-0.5 SB032-1.5	ND <2.0	ND <2.0	1
	SB032-2.5			
	SB033-0.5	ND <2.0	ND <2.0	1
November 20, 2016	SB033-1.5 SB033-2.5			
	SB034-0.5	ND <2.0	19.6	1
November 20, 2016	SB034-1.5			
	SB034-2.5	 ND <2.0		
November 20, 2016	SB035-0.5 SB035-1.5	ND <2.0	9.07	1
	SB035-2.5			
Navambar 30, 3046	SB036-0.5	ND <2.0	26.4	1
November 20, 2016	SB036-1.5 SB036-2.5			
	SB037-0.5	ND <2.0	18.6	1
November 20, 2016	SB037-1.5			
	SB037-2.5 SB038-0.5	 ND <2.0	 9.75	1
November 5, 2016	SB038-0.5			
	SB038-2.5			
November 5, 2015	SB039-0.5 SB039-1.5	ND <2.0	2.3	1
November 6, 2016	SB039-1.5 SB039-2.5			
	SB040-0.5	ND <2.0	ND <2.0	1
November 6, 2016	SB040-1.5			
1	SB040-2.5			

Poly-Chlorinated Biphenols by EPA Method 8082 ug/kg	Dilution Factor
ND <100	2
-	
-	
ND <100	2
-	
-	

TABLE 4

SUMMARY OF ARSENIC, LEAD AND PCBs ANALYTICAL DATA

NORTH HOLLYWOOD HIGH SCHOOL 5231 COLFAX AVENUE LOS ANGELES CA

Sample Collection Date	Sample ID	EPA Metho	od 6010B		
Sample Collection Date	Sample ID	Arsenic	Lead	Dilution	
		milligrams per ki	logram (mg/kg)	Factor	
Detection	n Limit	2.0	2.0		
Site Screeni	ng Levels	12*	80**		
	SB041-0.5	32.2	64.7	1	
November 20, 2016	SB041-1.5 SB041-2.5	25.9 ND <2.0	3.37	1	
	SB041-2.5 SB041S1-0.5	ND <2.0	64.7	1	
March 26, 2016	SB041S1-1.5	ND <2.0	3.37	1	
	SB041S1-2.5 SB041S1-3	117 ND <2.0		1	
April 29, 2016	SB041S1-4			-	
	SB041S1-5				
	SB041S2-0.5 SB041S2-1.5	ND <2.0 ND <2.0		1	
March 26, 2016	SB041S2-2.5	ND <2.0		1	
Water 20, 2010	SB041S3-0.5	ND <2.0		1	
	SB041S3-1.5 SB041S3-2.5	ND <2.0 7.67		1	
	SB042-0.5	ND <2.0	2.86	1	
November 20, 2016	SB042-1.5 SB042-2.5				
	SB042-2.5 SB043-0.5	ND <2.0	168	1	
	SB043-1.5	ND <2.0	12.6	1	
November 19, 2016	SB043-2.5 SB043-0.5 Dup	 ND <2.0	12.4		
	SB043-1.5 Dup		12.6		
	SB043-2.5 Dup				
November 5, 2016	SB044-0.5 SB044-1.5	ND <2.0	ND <2.0	1	
	SB044-2.5				
Navarahan E 2016	SB045-0.5	ND <2.0	ND <2.0	1	
November 5, 2016	SB045-1.5 SB045-2.5				
	SB046-0.5	ND <2.0	11.7	1	
November 19, 2016	SB046-1.5				
	SB046-2.5 SB047-0.5	ND <2.0	19.8	1	
November 19, 2016	SB047-1.5				
	SB047-2.5	 ND +3 0		1	
November 19, 2016	SB048-0.5 SB048-1.5	ND <2.0	62.2		
	SB048-2.5				
Navarahan C 2016	SB049-0.5	ND <2.0	9.89	1	
November 6, 2016	SB049-1.5 SB049-2.5				
	SB050-0.5	ND <2.0	ND <2.0	1	
November 6, 2016	SB050-1.5				
	SB050-2.5 SB051-0.5	ND <2.0	96.7	1	
November 19, 2016	SB051-1.5	ND <2.0	25.9		
	SB051-2.5	 ND <2.0	 ND <2.0	1	
November 19, 2016	SB052-0.5 SB052-1.5	ND <2.0 	ND <2.0		
	SB052-2.5				
	SB053-0.5 SB053-1.5	ND <2.0	2.7	1	
November 10, 2016	SB053-2.5				
November 19, 2016	SB053-0.5 Dup	ND <2.0	ND <2.0		
	SB053-1.5 Dup SB053-2.5 Dup				
	SB054-0.5	ND <2.0	ND <2.0	1	
November 20, 2016	SB054-1.5				
	SB054-2.5 SB055-0.5	 ND <2.0	 ND <2.0	1	
November 6, 2016	SB055-1.5			-	
	SB055-2.5	 ND -2-0	 ND -2.0		
November 6, 2016	SB056-0.5 SB056-1.5	ND <2.0	ND <2.0	1	
	SB056-2.5				

Poly-Chlorinated Biphenols by EPA Method 8082 ug/kg	Dilution Factor
 ND <50	1
ND <50	1
ND <250	5

TABLE 4

SUMMARY OF ARSENIC, LEAD AND PCBs ANALYTICAL DATA

NORTH HOLLYWOOD HIGH SCHOOL 5231 COLFAX AVENUE LOS ANGELES CA

		EPA Metho	od 6010B	
Sample Collection Date	Sample ID	Arsenic	Lead	Dilution
		milligrams per kil	ogram (mg/kg)	Factor
Detection	Limit	2.0	2.0	
Site Screenin	ng Levels	12*	80**	
	SB057-0.5	ND <2.0	ND <2.0	1
November 6, 2016	SB057-1.5			
	SB057-2.5	 ND <2.0	 ND <2.0	
November 20, 2016	SB058-0.5 SB058-1.5	ND <2.0 	ND <2.0	1
110101111001 20, 2010	SB058-2.5			
	SB059-0.5	ND <2.0	ND <2.0	1
November 20, 2016	SB059-1.5			
	SB059-2.5			
	SB060-0.5	ND <2.0	8.32	1
November 20, 2016	SB060-1.5			
	SB060-2.5			
Navarah - 10 2016	SB061-0.5	15.7	12.9	1
November 19, 2016	SB061-1.5 SB061-2.5	ND <2.0	ND <2.0	1
	SB061S1-0.5	ND <2.0		1
	SB061S1-1.5	ND <2.0		1
	SB061S1-2.5			
	SB061S2-0.5	ND <2.0		1
March 26, 2016	SB061S2-1.5	ND <2.0		1
	SB061S2-2.5			
	SB061S3-0.5	ND <2.0		1
	SB061S3-1.5	ND <2.0		1
	SB061S3-2.5 SB062-0.5	 ND <2.0		
November 6, 2016	SB062-0.5 SB062-1.5	ND <2.0	16.1	1
November 0, 2010	SB062-2.5			-
	SB063-0.5	8.58	30.5	
November 19, 2016	SB063-1.5			
	SB063-2.5			
	SB064-0.5	ND <2.0	ND <2.0	
November 6, 2016	SB064-1.5			
	SB064-2.5			
	SB065-0.5	ND <2.0	149	
November 6, 2016	SB065-1.5		8.9	
	SB065-2.5 SB065S1-0.5	ND <2.0	ND < 2.0	1
	SB065S1-1.5	ND \2.0	3.64	1
	SB065S1-2.5			
March 26, 2016	SB065S2-0.5	ND <2.0	11.1	1
	SB065S2-1.5		8.38	1
	SB065S2-2.5			
	SB066-0.5	ND <2.0	48.2	
November 6, 2016	SB066-1.5	**		
	SB066-2.5	 ND -2 0		
November 6, 2016	SB067-0.5	ND <2.0	207	
November 6, 2016	SB067-1.5 SB067-2.5		14.6	
	SB067S1-0.5		12.3	1
	SB067S1-1.5		2.95	1
	SB067S1-2.5			
	SB067S2-0.5		14.6	1
	SB067S2-1.5		51.4	1
March 26, 2016	SB067S2-2.5			
	SB067S3-0.5		17.5	1
	SB067S3-1.5		37.9	1
	SB067S3-2.5			
	SB067S4-0.5 SB067S4-1.5		176 59.5	1
	SB067S4-1.5 SB067S4-2.5		59.5	
	3500734-2.3	ļ		

Poly-Chlorinated Biphenols by EPA Method 8082	
ug/kg	Dilution Factor
-	
-	
-	
-	
	-

TABLE 4

SUMMARY OF ARSENIC, LEAD AND PCBs ANALYTICAL DATA

NORTH HOLLYWOOD HIGH SCHOOL 5231 COLFAX AVENUE LOS ANGELES CA

County Collection Pate	Saurala IB	EPA Meth	od 6010B	
Sample Collection Date	Sample ID	Arsenic	Lead	Dilution
		milligrams per ki	ilogram (mg/kg)	Factor
Detectio	n Limit	2.0	2.0	1
Site Screeni	ng Levels	12*	80**	
	SB068-0.5	2.8	211	
November 6, 2016	SB068-1.5		50.7	
	SB068-2.5 SB068S1-0.5		60.3	1
	SB068S1-1.5		ND <2.0	1
	SB068S1-2.5		 ND -2.0	
	SB068S2-0.5 SB068S2-1.5		ND <2.0 ND <2.0	1
March 26, 2016	SB068S2-2.5			-
Widten 20, 2010	SB068S3-0.5		ND <2.0	1
	SB068S3-1.5 SB068S3-2.5		ND <2.0	1
	SB068S4-0.5		ND <2.0	1
	SB068S4-1.5		ND <2.0	1
	SB068S4-2.5 SB069-0.5	2.48	131	
November 6, 2016	SB069-1.5	2.40	11.8	
	SB069-2.5			
	SB069-0.5		ND <2.0	1
	SB069-1.5 SB069-2.5		ND <2.0	1
March 26, 2016	SB069S1-0.5		ND <2.0	1
	SB069S1-1.5		ND <2.0	1
	SB069S1-2.5	 ND <2.0		1
November 19, 2016	SB070-0.5 SB070-1.5	ND <2.0	11.6	
	SB070-2.5			
	SB071-0.5	11.2	130	
November 6, 2016	SB071-1.5 SB071-2.5		91.8 3.44	
	SB071S1-0.5		16.3	
July 20, 2017	SB071S2-0.5		14.5	
	SB071S2-0.5 Dup	 ND <2.0	14.3	
November 6, 2016	SB072-0.5 SB072-1.5	ND <2.0	94.2 2.05	
	SB072-2.5			
	SB073-0.5	ND <2.0	8.66	1
November 6, 2016	SB073-1.5 SB073-2.5			
	SB074-0.5	ND <2.0	12.5	1
November 6, 2016	SB074-1.5			
	SB074-2.5			
November 6, 2016	SB075-0.5 SB075-1.5	ND <2.0	16.8	1
	SB075-2.5			
	SB076-0.5	ND <2.0	37.9	1
November 6, 2016	SB076-1.5			
	SB076-2.5 SB077-0.5	ND <2.0	4.19	1
November 6, 2016	SB077-1.5			-
	SB077-2.5			
	SB078-0.5 SB078-1.5	ND <2.0	7.59	1
Neuromber 40, 2046	SB078-2.5			
November 19, 2016	SB078-0.5 Dup	4.97	10.3	
	SB078-1.5 Dup			
	SB078-2.5 Dup SB079-0.5	ND <2.0	ND <2.0	1
November 6, 2016	SB079-1.5			
	SB079-2.5			
November 5 2016	SB080-0.5 SB080-1.5	ND <2.0	4.66	
November 6, 2016	SB080-1.5 SB080-2.5			
	SB081-0.5	ND <2.0	ND <2.0	1
November 6, 2016	SB081-1.5		-	
	SB081-2.5			

Poly-Chlorinated Biphenols by EPA Method 8082 ug/kg	Dilution Factor
-	
ND <50	1
-	
 ND <250	 5

TABLE 4

SUMMARY OF ARSENIC, LEAD AND PCBs ANALYTICAL DATA

NORTH HOLLYWOOD HIGH SCHOOL 5231 COLFAX AVENUE LOS ANGELES CA

		EPA Metho	od 6010B	
Sample Collection Date	Sample ID	Arsenic	Lead	Dilution
		milligrams per ki	logram (mg/kg)	Factor
Detectio	n Limit	2.0	2.0	
Site Screeni	ng Levels	12*	80**	1
	SB082-0.5	ND <2.0	ND <2.0	1
November 6, 2016	SB082-1.5			
	SB082-2.5 SB083-0.5	 ND <2.0	4.53	1
November 6, 2016	SB083-1.5			
	SB083-2.5			
November 6, 2016	SB084-0.5 SB084-1.5	ND <2.0	19.4	1
	SB084-2.5			
	SB085-0.5	ND <2.0	17.8	1
November 6, 2016	SB085-1.5 SB085-2.5			
	SB086-0.5	ND <2.0	64.6	1
November 6, 2016	SB086-1.5			
	SB086-2.5	 ND <2.0		 1
November 5, 2016	SB087-0.5 SB087-1.5	ND <2.0	3.64	
	SB087-2.5			
	SB088-0.5	ND <2.0	23.7	1
November 5, 2016	SB088-1.5 SB088-2.5			
	SB089-0.5	ND <2.0	71.6	1
November 5, 2016	SB089-1.5			
	SB089-2.5			
November 5, 2016	SB090-0.5 SB090-1.5	ND <2.0	6.18	1
14040111001 3, 2010	SB090-2.5			-
	SB091-0.5	ND <2.0	2.42	1
November 5, 2016	SB091-1.5			
	SB091-2.5 SB092-0.5	 ND <2.0	ND <2.0	1
	SB092-1.5			
November 5, 2016	SB092-2.5			
	SB093-0.5 SB093-1.5	ND <2.0	5.06	1
	SB093-2.5			
	SB094-0.5	ND <2.0	81.4	1
November 5, 2016	SB094-1.5		155	-
	SB094-2.5 SB094S1-0.5		71.1 ND <2.0	1
March 26, 2016	SB094S1-1.5		ND <2.0	-
	SB094S1-2.5		ND <2.0	
November 5, 2016	SB095-0.5 SB095-1.5	9.15	16.1	
November 3, 2010	SB095-2.5			
	SB096-0.5	2.19	13.1	1
November 5, 2016	SB096-1.5			
	SB096-2.5 SB097-0.5	ND <2.0	76.1	1
November 5, 2016	SB097-1.5			
	SB097-2.5			
November 5, 2016	SB098-0.5 SB098-1.5	2.56	37.9	1
November 5, 2016	SB098-1.5 SB098-2.5		-	
	SB099-0.5	5.39	15.3	1
November 5, 2016	SB099-1.5			-
	SB099-2.5 SB100-0.5	 ND <2.0	125	1
November 5, 2016	SB100-0.5		3.13	1
	SB100-2.5			
	SB100S1-0.5		7.77	1
	SB100S1-1.5 SB100S1-2.5		ND <2.0	
March 26, 2016	SB100S2-0.5		ND <2.0	1
	SB100S2-1.5		54.7	1
	SB100S2-2.5			

Poly-Chlorinated Biphenols by EPA Method 8082 ug/kg	Dilution Factor
ND <100	2

TABLE 4

SUMMARY OF ARSENIC, LEAD AND PCBs ANALYTICAL DATA

NORTH HOLLYWOOD HIGH SCHOOL 5231 COLFAX AVENUE LOS ANGELES CA

		EPA Metho	od 6010B	
Sample Collection Date	Sample ID -	Arsenic	Lead	Dilution
		milligrams per ki	logram (mg/kg)	Factor
Detection	Limit	2.0	2.0	
Site Screening	g Levels	12*	80**	
	SB101-0.5	ND <2.0	64.5	1
-	SB101-1.5 SB101-2.5			
November 5, 2016	SB102-0.5	54.5	49.5	1
	SB102-1.5 SB102-2.5	ND <2.0		1
	SB102-2.5 SB102S1-0.5	57.1		1
	SB102S1-1.5 SB102S1-2.5	ND <2.0		1
	SB102S2-0.5	109		1
-	SB102S2-1.5	ND <2.0		1
March 26, 2016	SB102S2-2.5 SB102S3-0.5	ND <2.0		1
	SB102S3-1.5	ND <2.0		1
	SB102S3-2.5 SB102S4-0.5	26.2		1
	SB102S4-1.5	111		1
	SB102S4-2.5 SB102S5-0.5	ND <2.0 ND <2.0		1
	SB102S5-1.5	ND <2.0		1
-	SB102S5-2.5 SB102S6-0.5	 ND <2.0		1
	SB102S6-1.5	ND <2.0		1
April 29, 2016	SB102S6-2.5 SB102S7-0.5			
	SB102S7-1.5			
	SB102S7-2.5 SB102S8-0.5			
	SB102S8-1.5		-	
	SB102S8-2.5 SB103-0.5	3.37	7.13	1
November 5, 2016	SB103-0.5 SB103-1.5		7.13	
	SB103-2.5	 ND <2.0	12.8	1
November 5, 2016	SB104-0.5 SB104-1.5	ND <2.0	12.8	
	SB104-2.5	2.54		
November 5, 2016	SB105-0.5 SB105-1.5	3.54	20.6	1
	SB105-2.5			
November 5, 2016	SB106-0.5 SB106-1.5	ND <2.0	22.3	1
	SB106-2.5			
November 5, 2016	SB107-0.5 SB107-1.5	ND <2.0	10.5	1
110101111111111111111111111111111111111	SB107-2.5			
November 5, 2016	SB108-0.5	ND <2.0	20.3	1
November 5, 2016	SB108-1.5 SB108-2.5	ND <2.0 ND <2.0		
Il. 20 2047	SB111-0.5	2.19	ND <2.0	1
July 20, 2017	SB111-1.5 SB111-2.5	ND <2.0 ND <2.0	ND <2.0 ND <2.0	
	SB112-0.5	ND <2.0	ND <2.0	1
July 20, 2017	SB112-1.5 SB112-2.5	ND <2.0 ND <2.0	ND <2.0 ND <2.0	
	SB113-0.5	ND <2.0	11.9	1
July 20, 2017	SB113-1.5 SB113-2.5	ND <2.0 ND <2.0	ND <2.0 ND <2.0	
	SB113-2.5 SB114-0.5	ND <2.0	286	1
July 20, 2017	SB114-0.5 Dup	6.23 ND <2.0	285 ND <2.0	
	SB114-1.5 SB114-2.5	ND <2.0	3.1	
July 20, 2017	SB115-0.5	4.74	357	1
July 20, 2017	SB115-1.5 SB115-2.5	ND <2.0 ND <2.0	10.5 55.0	
	SB116-0.5	ND <2.0	59.3	1
July 20, 2017	SB116-1.5 SB116-2.5	ND <2.0 ND <2.0	26.9 53.1	
	SB117-0.5	7.40	27.0	1
July 20, 2017	SB117-0.5 Dup SB117-1.5	10.6 ND <2.0	27.0 ND <2.0	
	SB117-1.5 SB117-2.5	ND <2.0	ND <2.0	

Poly-Chlorinated Biphenols by EPA Method 8082	Dilution
ug/kg	Factor
-	
-	
-	

TABLE 4 SUMMARY OF ARSENIC, LEAD AND PCBs ANALYTICAL DATA NORTH HOLLYWOOD HIGH SCHOOL 5231 COLFAX AVENUE LOS ANGELES CA

Sample Collection Date	Sample ID	EPA Metho	d 6010B	
Sample Collection Date	Sample ID	Arsenic	Lead	Dilution Factor
		milligrams per kil	ogram (mg/kg)	
Detection	n Limit	2.0	2.0	-
Site Screenii	ng Levels	12*	80**	
	SB118-0.5	2.96	16.7	1
July 20, 2017	SB118-1.5	ND <2.0	2.50	
	SB118-2.5	ND <2.0	5.71	
	SB119-0.5	2.19	18.0	1
July 20, 2017	SB119-1.5	19.3	27.6	
	SB119-2.5	ND <2.0	ND <2.0	

Poly-Chlorinated Biphenols by EPA Method 8082	Dilution
ug/kg	Factor
	-
	-
	-

Bold concentrations exceed screening levels

Notes:
--- Not Analyzed or Not Applicable
ug/kg = micrograms per kilogram

Dup = duplicate

Arsenic and Lead Detection Limit = Equivalent to Practical Quantization Limit

* Regional background arsenic concentration (12 mg/kg) for Southern California soils; Department of Toxic Substances Control (DTSC), March 2008
**DTSCs Human and Ecological Risk Office (HERO), Note 3, Modified Screening Level for lead (80 mg/kg) detected in Site soils,

January 2016

TABLE 5

SUMMARY OF METALS ANALYTICAL DATA

NORTH HOLLYWOOD HIGH SCHOOL 5231 COLFAX AVENUE LOS ANGELES CA

Sample Collection		Title 22 Metals by EPA Method 6010B/7470A																	
Date	Sample ID	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	
										ms per kilogra									Dilution
Detection		2.0	2.0	1.0	1.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	1.0	2.0	2.0	5.0	Factor
DTSC Screenii		30	12*	5,200	16	1.7	100,000	660	3,000	80	1.0	380	1,600	380	380	5.00	530	23,000	
November 20, 2016	SB011-10	ND <2.0	ND <2.0	140	ND <1.0	ND <1.0	17.7	10.5	22.3	ND <2.0	ND <0.05	ND <2.0	13.7	ND <2.0	ND <1.0	ND <2.0	41.1	47.7	1
	SB011-15	ND <2.0	ND <2.0	101	ND <1.0	ND <1.0	16.7	9.08	17.8	ND <2.0	ND <0.05	ND <2.0	12.1	ND <2.0	ND <1.0	ND <2.0	38.1	40.8	1
November 20, 2016	SB012-10	ND <2.0	ND <2.0	128	ND <1.0	ND <1.0	16.3	9.57	17.5	ND <2.0	ND <0.05	ND <2.0	12.8	ND <2.0	ND <1.0	ND <2.0	38.5	42.4	1
	SB012-15	ND <2.0	ND <2.0	167	ND <1.0	ND <1.0	25.4	12.4	23.9	ND <2.0	ND <0.05	ND <2.0	17.8	ND <2.0	ND <1.0	ND <2.0	48.9	55.5	1
November 20, 2016	SB013-10	ND <2.0	ND <2.0	60.1	ND <1.0	ND <1.0	8.5	4.25	8.97	ND <2.0	ND <0.05	ND <2.0	5.29	ND <2.0	ND <1.0	ND <2.0	30.2	19.2	1
	SB013-15 SB014-10	ND <2.0 ND <2.0	ND <2.0 ND <2.0	97.9 140	ND <1.0 ND <1.0	ND <1.0	9.44 20.6	2.78 13.3	38.9 25.9	ND <2.0	ND <0.05	ND <2.0	5.64 17.1	ND <2.0 ND <2.0	ND <1.0	ND <2.0	25.1 44.6	54.8 53.2	1
December 3, 2016			ND <2.0	140			17.2	12.3	19.7	4.39	ND <0.05	ND <2.0	13.7			ND <2.0			1
December 3, 2016	SB014-15 SB014-15 Dup	ND <2.0 ND <2.0	ND <2.0	147	ND <1.0 ND <1.0	ND <1.0 ND <1.0	21.7	13.5	23.8	4.24 4.53	ND <0.05 ND <0.05	ND <2.0 ND <2.0	17.1	ND <2.0 ND <2.0	ND <1.0 ND <1.0	ND <2.0 ND <2.0	36.1 46.1	46.6 52.8	1
	SB015-5	ND <2.0	ND <2.0	111	ND <1.0	ND <1.0	29.9	10.8	20.4	3.17	ND <0.05	ND <2.0	14.1	ND <2.0	ND <1.0	ND <2.0	34.4	44.7	1
	SB015-10	ND <2.0	ND <2.0	132	ND <1.0	ND <1.0	18.5	11.9	21.7	3.28	ND <0.05	ND <2.0	15.9	ND <2.0	ND <1.0	ND <2.0	40.1	47.3	1
	SB015-15	ND <2.0	ND <2.0	127	ND <1.0	ND <1.0	20.6	12.1	22.2	3.21	ND <0.05	ND <2.0	14.7	ND <2.0	ND <1.0	ND <2.0	37.4	44.2	1
	SB015-13	ND <2.0	ND <2.0	70.6	ND <1.0	ND <1.0	11.9	8.19	13.2	ND <2.0	ND <0.05	ND <2.0	8.53	ND <2.0	ND <1.0	ND <2.0	28.5	26.7	1
December 3, 2016	SB015-25	ND <2.0	ND <2.0	50.8	ND <1.0	ND <1.0	7.6	5.84	9.3	ND <2.0	ND <0.05	ND <2.0	5.62	ND <2.0	ND <1.0	ND <2.0	20.3	16.8	1
	SB015-30	ND <2.0	ND <2.0	179	ND <1.0	ND <1.0	22.5	17.6	32	3.16	ND <0.05	ND <2.0	17.3	ND <2.0	ND <1.0	ND <2.0	41.9	58.2	1
	SB015-35	ND <2.0	ND <2.0	216	ND <1.0	ND <1.0	23.2	17.2	29.1	2.28	ND <0.05	ND <2.0	16.5	ND <2.0	ND <1.0	ND <2.0	42.3	53.1	1
	SB015-40	ND <2.0	ND <2.0	147	ND <1.0	ND <1.0	25.8	20.2	35.2	4.04	ND <0.05	ND <2.0	15.8	ND <2.0	ND <1.0	ND <2.0	63.8	56.4	1
	SB016-5	ND <2.0	ND <2.0	150	ND <1.0	ND <1.0	19.2	13.5	21.7	3.7	ND <0.05	ND <2.0	15.3	ND <2.0	ND <1.0	ND <2.0	39.5	50.9	1
	SB016-10	ND <2.0	ND <2.0	133	ND <1.0	ND <1.0	21.2	12.7	21.4	3.18	ND <0.05	ND <2.0	16.6	ND <2.0	ND <1.0	ND <2.0	39.6	48.3	1
	SB016-15	ND <2.0	ND <2.0	134	ND <1.0	ND <1.0	20.7	11.6	21.6	4.38	ND <0.05	ND <2.0	15.7	ND <2.0	ND <1.0	ND <2.0	40.3	47.7	1
	SB016-15 Dup	ND <2.0	ND <2.0	131	ND <1.0	ND <1.0	20.6	11.7	22.4	4.54	ND <0.05	ND <2.0	17.2	ND <2.0	ND <1.0	ND <2.0	42.9	47.9	1
December 3, 2016	SB016-20	ND <2.0	ND <2.0	82.2	ND <1.0	ND <1.0	12.8	8.45	12.8	3.36	ND < 0.05	ND <2.0	8.93	ND <2.0	ND <1.0	ND <2.0	31.2	28.6	1
,	SB016-25	ND <2.0	ND <2.0	65.7	ND <1.0	ND <1.0	6	5.18	11.4	2.97	ND < 0.05	ND <2.0	5.66	ND <2.0	ND <1.0	ND < 2.0	15.7	21.2	1
	SB016-30	ND <2.0	ND <2.0	213	ND <1.0	ND <1.0	22.3	17.1	31.2	4.89	ND < 0.05	ND <2.0	17.3	ND <2.0	ND <1.0	ND < 2.0	42.3	55.8	1
	SB016-35	ND <2.0	ND <2.0	95.9	ND <1.0	ND <1.0	12.5	8.82	13.3	2.17	ND < 0.05	ND <2.0	9.5	ND <2.0	ND <1.0	ND <2.0	20.9	28	1
	SB016-40	ND <2.0	ND <2.0	60.8	ND <1.0	ND <1.0	24.9	7.28	21.9	2.52	ND < 0.05	ND <2.0	7.95	ND <2.0	ND <1.0	ND <2.0	48.9	20.4	1
	SB017-5	ND <2.0	ND <2.0	96.9	ND <1.0	ND <1.0	15.4	10.1	14.6	ND <2.0	ND < 0.05	ND <2.0	11.3	ND <2.0	ND <1.0	ND <2.0	35.1	36.5	1
	SB017-10	ND <2.0	ND <2.0	134	ND <1.0	ND <1.0	21.6	13.9	23.8	3.87	ND < 0.05	ND <2.0	18.5	ND <2.0	ND <1.0	ND < 2.0	47.5	54.6	1
	SB017-10 Dup	ND <2.0	ND <2.0	122	ND <1.0	ND <1.0	22.2	12.7	24.9	5.18	ND < 0.05	ND <2.0	18.2	ND <2.0	ND <1.0	ND <2.0	48.9	53.9	1
	SB017-15	ND <2.0	ND <2.0	150	ND <1.0	ND <1.0	22.6	14.3	24.9	4.5	ND < 0.05	ND <2.0	17.7	ND <2.0	ND <1.0	ND <2.0	45.2	55.2	1
December 3, 2016	SB017-20	ND <2.0	ND <2.0	94.4	ND <1.0	ND <1.0	17.7	11.2	17.2	2.58	ND < 0.05	ND <2.0	13.3	ND <2.0	ND <1.0	ND <2.0	42.2	36.7	1
	SB017-25	ND <2.0	ND <2.0	46.7	ND <1.0	ND <1.0	8.98	5.39	8.74	ND <2.0	ND < 0.05	ND <2.0	6.57	ND <2.0	ND <1.0	ND <2.0	22.9	18.4	1
	SB017-30	ND <2.0	ND <2.0	208	ND <1.0	ND <1.0	22.8	16.4	31.1	2.32	ND <0.05	ND <2.0	16.5	ND <2.0	ND <1.0	ND <2.0	42.9	55.7	1
	SB017-35	ND <2.0	ND <2.0	131	ND <1.0	ND <1.0	21.1	16.4	26.3	ND <2.0	ND < 0.05	ND <2.0	17.1	ND <2.0	ND <1.0	ND <2.0	46.1	48.5	1
	SB017-40	ND <2.0	ND <2.0	59.6	ND <1.0	ND <1.0	10.9	7.9	12.9	ND <2.0	ND < 0.05	ND <2.0	8.29	ND <2.0	ND <1.0	ND <2.0	25.5	24.4	1
	SB018-5	ND <2.0	ND <2.0	97.4	ND <1.0	ND <1.0	11.7	8.91	14.8	ND <2.0	ND <0.05	ND <2.0	8.34	ND <2.0	ND <1.0	ND <2.0	25.8	34.3	1
	SB018-10	ND <2.0	ND <2.0	131	ND <1.0	ND <1.0	22.7	12.1	22.6	ND <2.0	ND <0.05	ND <2.0	15.3	ND <2.0	ND <1.0	ND <2.0	39.4	50.1	1
	SB018-15	ND <2.0	ND <2.0	122	ND <1.0	ND <1.0	13.7	10.1	17.1	ND <2.0	ND <0.05	ND <2.0	10.8	ND <2.0	ND <1.0	ND <2.0	31.8	39.2	1
December 10, 2016	SB018-20	ND <2.0	ND <2.0	161	ND <1.0	ND <1.0	26.8	11.9	27.3	2.23	ND <0.05	ND <2.0	16.8	ND <2.0	ND <1.0	ND <2.0	39.9	75.9	1
	SB018-25	ND <2.0	ND <2.0 ND <2.0	97.4	ND <1.0	ND <1.0	39.6	8.98 13.2	26.9 24.5	ND <2.0	ND <0.05	ND <2.0 ND <2.0	15.9 12.9	ND <2.0	ND <1.0	ND <2.0 ND <2.0	28.4	170 50.2	1
	SB018-30	ND <2.0		142	ND <1.0	ND <1.0	18.2		37.5	ND <2.0	ND <0.05			ND <2.0	ND <1.0		34.9		1
	SB018-35	ND <2.0	ND <2.0	284	ND <1.0	ND <1.0	20.7	18.4		3.08	ND <0.05	ND <2.0	16.6	ND <2.0	ND <1.0	ND <2.0	43.1	60.9	1
<u> </u>	SB018-40 SB019-5	ND <2.0 ND <2.0	ND <2.0 ND <2.0	39.5	ND <1.0 ND <1.0	ND <1.0 ND <1.0	6.35 18.8	5.02 11.4	8.00 18.1	ND <2.0 2.84	ND <0.05 ND <0.05	ND <2.0 ND <2.0	4.72 14.5	ND <2.0 ND <2.0	ND <1.0 ND <1.0	ND <2.0 ND <2.0	17 39.3	16 39.5	1
	SB019-5 SB019-10	ND <2.0	ND <2.0	111 127	ND <1.0 ND <1.0	ND <1.0	18.8 21.9	11.4	18.1 25.6	5.44	ND <0.05 ND <0.05	ND <2.0	19.1	ND <2.0 ND <2.0	ND <1.0	ND <2.0	39.3 47.4	52.9	1
	SB019-10 SB019-15	ND <2.0	ND <2.0	89.3	ND <1.0	ND <1.0	14.5	9.2	25.6 15.1	2.78	ND <0.05 ND <0.05	ND <2.0 ND <2.0	19.1	ND <2.0	ND <1.0	ND <2.0	30.2	31.9	1
	SB019-15 SB019-20	ND <2.0	ND <2.0	89.3 95.4	ND <1.0	ND <1.0	17.4	10.3	15.1	2.78	ND <0.05	ND <2.0	12.7	ND <2.0	ND <1.0	ND <2.0	37.7	31.9	1
December 3, 2016	SB019-25	ND <2.0	ND <2.0	102	ND <1.0	ND <1.0	14.5	10.3	13.4	6.92	ND <0.05	ND <2.0	12.7	ND <2.0	ND <1.0	ND <2.0	34.2	38.9	1
December 3, 2010	SB019-23 SB019-30	ND <2.0	ND <2.0	142	ND <1.0	ND <1.0	24.1	13.5	22.9	4.12	ND <0.05	ND <2.0	19.3	ND <2.0	ND <1.0	ND <2.0	46	51.8	1
	SB019-30 Dup	ND <2.0	ND <2.0	136	ND <1.0	ND <1.0	23.4	13.8	24	4.12	ND <0.05	ND <2.0	19.3	ND <2.0	ND <1.0	ND <2.0	44.9	49.2	1
	SB019-35	ND <2.0	ND <2.0	130	ND <1.0	ND <1.0	22.3	16.4	28	2.53	ND <0.05	ND <2.0	16.9	ND <2.0	ND <1.0	ND <2.0	40.6	54	1
	SB019-40	ND <2.0	ND <2.0	82.8	ND <1.0	ND <1.0	17.3	11.5	22.6	2.94	ND <0.05	ND <2.0	13.3	ND <2.0	ND <1.0	ND <2.0	38.5	41.3	1
	30013-40	ND \2.0	ND \2.0	02.0	IND /1.0	IAD < 1.0	17.3	11.5	22.0	2.34	14D \0.03	ND \Z.U	13.3	IND \Z.U	MD <1.0	ND \Z.U	30.3	41.3	1

TABLE 5 SUMMARY OF METALS ANALYTICAL DATA

NORTH HOLLYWOOD HIGH SCHOOL 5231 COLFAX AVENUE LOS ANGELES CA

Sample Collection									Title 22	Metals by EP.	A Method 60	10B/7470A							
Date	Sample ID	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	
Juic									milligrar	ns per kilogra	m (mg/kg)								Dilution
Detection	Limit	2.0	2.0	1.0	1.0	1.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	1.0	2.0	2.0	5.0	Factor
DTSC Screening	ig Level ¹	30	12*	5,200	16	1.7	100,000	660	3,000	80	1.0	380	1,600	380	380	5.00	530	23,000	
	SB020-5	ND <2.0	ND <2.0	125	ND <1.0	ND <1.0	20.9	11.3	18.1	2.73	ND <0.05	ND <2.0	15	ND <2.0	ND <1.0	ND <2.0	42.6	42.5	1
	SB020-10	ND <2.0	ND <2.0	94.6	ND <1.0	ND <1.0	19.6	11.7	19.4	3.33	ND <0.05	ND <2.0	16.3	ND <2.0	ND <1.0	ND <2.0	44.9	47.2	1
	SB020-15	ND <2.0	ND <2.0	145	ND <1.0	ND <1.0	23.6	14	23.9	3.49	ND < 0.05	ND <2.0	19.2	ND <2.0	ND <1.0	ND < 2.0	48.6	56.1	1
December 3, 2016	SB020-20	ND <2.0	ND <2.0	99.9	ND <1.0	ND <1.0	18.2	10.5	16.7	2.27	ND < 0.05	ND <2.0	13.5	ND <2.0	ND <1.0	ND <2.0	44.2	37.4	1
December 3, 2010	SB020-25	ND <2.0	ND <2.0	129	ND <1.0	ND <1.0	21.6	13	24.8	3.1	ND < 0.05	ND <2.0	17.6	ND <2.0	ND <1.0	ND < 2.0	42.8	46.3	1
	SB020-30	ND <2.0	ND <2.0	214	ND <1.0	ND <1.0	27.4	19.9	35.5	4.32	ND < 0.05	ND <2.0	21.5	ND <2.0	ND <1.0	ND < 2.0	55.1	62.2	1
	SB020-35	ND <2.0	ND <2.0	200	ND <1.0	ND <1.0	28.4	19.1	31.8	2.64	ND < 0.05	ND <2.0	19.8	ND <2.0	ND <1.0	ND < 2.0	47.9	59.8	1
	SB020-40	ND <2.0	ND <2.0	113	ND <1.0	ND <1.0	15.9	9.46	19.7	2.05	ND < 0.05	ND <2.0	12.1	ND <2.0	ND <1.0	ND <2.0	35.6	41.5	1
	SB109-0.5	ND <2.0	2.13	9.49	ND <1.0	ND <1.0	ND <1.0	24.2	ND <2.0	101	ND < 0.5	ND <2.0	3.7	ND <2.0	ND <1.0	ND < 2.0	ND <2.0	508	1
November 5, 2016	SB109-1.5									132									
	SB109-2.5		1	1	-				-	88.8	1								
	SB109S1-0.5			-						19.7	-								
July 20, 2017	SB109S1-1.5			-						10.7	-								
July 20, 2017	SB109S1-2.5									5.51									
	SB109-3									ND <2.0									
	SB110-5	ND <2.0	ND <2.0	68.2	ND <1.0	ND <1.0	9.46	6.77	10.1	ND <2.0	ND < 0.05	ND <2.0	7.05	ND <2.0	ND <1.0	ND <2.0	26.2	25.5	1
	SB110-10	ND <2.0	ND <2.0	162	ND <1.0	ND <1.0	22.5	14.1	26.6	3.71	ND < 0.05	ND <2.0	18.3	ND <2.0	ND <1.0	ND <2.0	47.1	61.7	1
	SB110-15	ND <2.0	ND <2.0	160	ND <1.0	ND <1.0	19.2	13.4	23.5	3.27	ND < 0.05	ND <2.0	17.6	ND <2.0	ND <1.0	ND <2.0	44.3	57.4	1
December 10, 2016	SB110-20	ND <2.0	ND <2.0	152	ND <1.0	ND <1.0	18.6	12.4	21.6	3.27	ND < 0.05	ND <2.0	14.8	ND <2.0	ND <1.0	ND <2.0	41.4	47.5	1
December 10, 2016	SB110-25	ND <2.0	ND <2.0	112	ND <1.0	ND <1.0	16.7	9.82	15.4	ND <2.0	ND < 0.05	ND <2.0	11.1	ND <2.0	ND <1.0	ND <2.0	35.3	37.5	1
	SB110-30	ND <2.0	ND <2.0	249	ND <1.0	ND <1.0	23.4	18.3	32.5	ND <2.0	ND <0.05	ND <2.0	18.2	ND <2.0	ND <1.0	ND <2.0	44.3	62.4	1
	SB110-35	ND <2.0	ND <2.0	180	ND <1.0	ND <1.0	21.4	15.6	26.3	2.51	ND <0.05	ND <2.0	15.4	ND <2.0	ND <1.0	ND <2.0	42.1	55.9	1
	SB110-40	ND <2.0	ND <2.0	62.2	ND <1.0	ND <1.0	9.59	7.18	10.3	ND <2.0	ND < 0.05	ND <2.0	7.81	ND <2.0	ND <1.0	ND <2.0	20.5	21.6	1

-- = Not Analyzed

Dup = duplicate

Arsenic and Lead Detection Limit = Equivalent to Practical Quatization Limit

* Regional background arsenic concentration (12 mg/kg) for Southern California soils; Department of Toxic Substances Control (DTSC), March 2008

**DTSCs Human and Ecological Risk Office (HERO), Note 3, Modified Screening Level for lead (80 mg/kg) detected in Site soils, January 2016 Bold concentrations exceed screening levels

TABLE 6
SUMMARY OF ESTIMATED VOLUMES OF IMPACTED SOIL
NORTH HOLLYWOOD HIGH SCHOOL 5231 COLFAX AVENUE LOS ANGELES CA

Sample Area	coc	Impacted Surface Area (Feet)		Impacted Depth (Feet bgs)	Impacted Volume in Cubic Feet	Impacted Volume in Cubic Yards
SB041	Arsenic	7 x 15	105	0 to 3	315	11.7
SB043	Lead	8 x 8	64	0 to 1.5	96	3.6
SB051	Lead	5 x 10	50	0 to 1.5	75	2.8
SB061	Arsenic	5 x 10	50	0 to 1.5	75	2.8
SB065	Lead	5 x 30	150	0 to 1.5	225	8.3
SB067	Lead	8 x 15	120	0 to1.5	180	6.7
SB068	Lead	8 x 10	80	0 to 1.5	120	4.4
SB069	Lead	5 x 10	50	0 to 1.5	75	2.8
SB071	Lead	5 x 5	25	0 to 2.5	62.5	2.3
SB072	Lead	5 x 5	25	0 to 1.5	37.5	1.4
SB094	Lead	3 x 5	15	0 to 2.5	37.5	1.4
SB100	Lead	5 x 5	25	0 to 1.5	37.5	1.4
SB102	Arsenic	16 x 14	224	0 to 1.5	336	12.4
36102	Arsenic	10 x 5	50	1.5 to 2.5	50	1.9
SB109	Lead	5 x 5	25	0 to 2.5	62.5	2.3
SB114	Lead	5 x 5	25	0 to 1.5	37.5	1.4
SB115	Lead	5 x 5	25	0 to 1.5	37.5	1.4
SB119	Arsenic	5 x 5	25	0 to 2.5	62.5	2.3
	To	tal Impac	ted Volun	ne		71

TABLE 7
SUMMARY OF SOIL WASTE CHARACTERIZATION DATA
NORTH HOLLYWOOD HIGH SCHOOL 5231 COLFAX AVENUE LOS ANGELES CA

		Total and So	oluble Waste T	hreshold C	oncentration							
Sample ID	Arsenic TTLC	Arsenic STLC	Arsenic TCLP	Lead TTLC	Lead STLC	Lead TCLP						
	mg/kg	mg/l	mg/l	mg/kg	mg/l	mg/l	Waste Characterization					
Hazardous Waste Limit	500	5	5	1,000	5	5						
SB041S1-2.5	117	7.81	1.46	-			Calfornia Hazardous Waste					
SB043-0.5	ND <2.0			168	0.52	ND <0.01	Non-Hazardous Waste					
SB051-0.5	ND <2.0			96.7	4.5	ND <0.01	Non-Hazardous Waste					
SB061-0.5	15.7			12.9		Non-Hazardous Waste						
SB065-0.5	ND <2.0			149	C	CA Haz - Charact	erized by SB67 and 68, adjacent to Classroom 1 Building					
SB067-0.5	ND <2.0			207	13.3	2.19	California Hazardous Waste					
SB068-0.5	2.8			211	17.9	17.9 0.45 California Hazardous Waste						
SB069-0.5	2.48			131	CA Haz - Characterized by SB67 and 68, adjacent to Classroom 1 Building							
SB071-0.5	11.2			130	8.06	ND <0.01	California Hazardous Waste					
SB072-0.5	ND <2.0			94.2	CA Haz - Characterized by SB71-0.5, adjacent to Woodshop Building							
SB094-1.5				155	Ca Haz Waste - Characterized by SB100							
SB100-0.5	ND <2.0			125	7.67	ND <0.01	Calfornia Hazardous Waste					
SB102-0.5	54.5	6.07		49.5	California Hazardous Waste							
SB102S4-1.5	111	5.87	1.42		California Hazardous Waste							
SB109-0.5 to 1.5	ND <2.0			88-132		CA Haz - Characterized by SB71-0.5, adjacent to Woodshop Building						

TABLE 8 SUMMARY OF BULK SAMPLE ANALYTICAL DATA NORTH HOLLYWOOD HIGH SCHOOL 5231 COLFAX AVENUE LOS ANGELES CA

			Title 22 Metals by EPA Method 6010B/7470A															Semi-Volatile Organic Compounds by EPA Method 8070C							
Sample Collection Date		Antimony	Arsenic	Arsenic STLC	Arsenic TCLP	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Lead STLC	Lead TCLP	Mercury	Molybdenum	Nickel	Nickel STLC	Selenium	Silver	Thallium	Vanadium	Zinc	Benzoic Acid	Other SVOCs
			milligrams per kilogram (mg/kg)													micrograms per kilogram (ug/kg)									
	BS01	ND <2.0	116	2.50 mg/l	0.08 mg/l	220	ND <1.0	ND <1.0	39.8	56.3	114	665	4.39 mg/l	0.04 mg/l	ND <0.05	ND <2.0	1,040	35.7 mg/l	ND <2.0	ND <1.0	ND <2.0	1,670	213	4,300	ND
December 12, 2017	TTLC	500	500	-		10,000	75		2,500	8,000	2,500	1,000		-	20	3,500	2,000		100	500	700	2,400	5,000		-
	STLC	15	-	5	-	100	75	-	5	80	25	75	5		0.2	350		20	1	5	7	24	250	-	
	TCLP		-		5	100			5					5	0.2	-			1	5					

Notes:
-- = Not Analyzed
ND = Not Detected
STLC = Soluble Toxic ND = Not Detected

TABLE 9
HUMAN HEALTH SCREENING EVALUATION
NORTH HOLLYWOOD HIGH SCHOOL
5231 COLFAX AVENUE, LOS ANGELES, CA

Constituent of Concern	Maximum Concentration (mg/kg)	Sample Location	Depth (feet bgs)	Cancer Screening Level (mg/kg) 1	Non-Cancer Screening Level (mg/kg) ¹	Calculated Cancer Risk	Calculated Hazard Index					
Arsenic	117	SB041S4-2.5	2-2.5		Use Screening Le	vel of 12 mg/kg						
Lead	357	SB115-0.5	0-0.5	Use Screening Level of 80 mg/kg								
Chlordane	0.232	SB105-0.5	0-0.5	0.44	35	5.27E-07	6.63E-03					
DDT	0.146	SB069-0.5	0-0.5	1.9	37	7.68E-08	3.95E-03					
DDE	1.14	SB067-0.5	0-0.5	2		5.70E-07						
DDD	0.0333	SB067-0.5	0-0.5	2.3		1.45E-08						
Dieldrin	0.0101	SB089-0.5	0-0.5	0.034	3.2	2.97E-07	3.16E-03					
Endrin	0.0488	SB069-0.5	0-0.5		19		2.57E-03					
Heptachlor epoxide	0.0175	SB105-0.5	0-0.5	0.07	1	2.50E-07	1.75E-02					
Cumulative Risk						1.74E-06	3.38E-02					

¹ - DTSC HERO Note 3, June 2016

APPENDIX A

PEA-Equivalent Sampling Locations

TABLE 1 NORTH HOLLYWOOD HIGH SCHOOL SAMPLE ANALYSIS PLAN

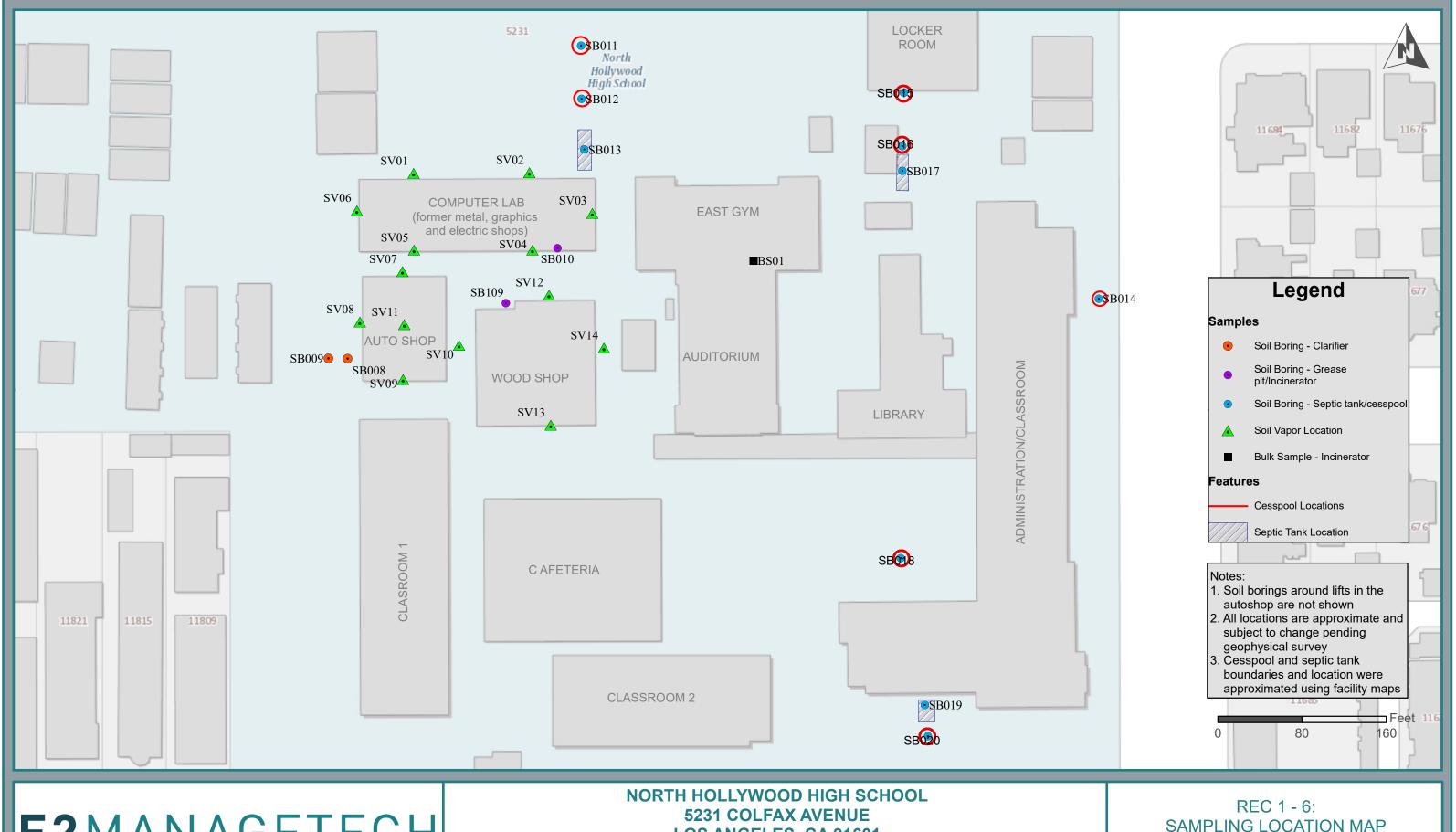
Boring ID	Matrix	Sample Depths	REC ID	Area of Concern	Analysis
SV01	Soil vapor	5', 15'	REC 1, 2, 3, and 6	Historical uses	VOCs by EPA 8260SV
SV02	Soil vapor	5', 15'	REC 1, 2, 3, and 6	Historical uses	VOCs by EPA 8260SV
SV03	Soil vapor	5', 15'	REC 1, 2, 3, and 6	Historical uses	VOCs by EPA 8260SV
SV04	Soil vapor	5', 15'	REC 1, 2, 3, and 6	Historical uses	VOCs by EPA 8260SV
SV05	Soil vapor	5', 15'	REC 1, 2, 3, and 6	Historical uses	VOCs by EPA 8260SV
SV06	Soil vapor	5', 15'	REC 1, 2, 3, and 6	Historical uses	VOCs by EPA 8260SV
SV07	Soil vapor	5', 15'	REC 1, 2, 3, and 6	Historical uses	VOCs by EPA 8260SV
SV08	Soil vapor	5', 15'	REC 1, 2, 3, and 6	Historical uses	VOCs by EPA 8260SV
SV09	Soil vapor	5', 15'	REC 1, 2, 3, and 6	Historical uses	VOCs by EPA 8260SV
SV10	Soil vapor	5', 15'	REC 1, 2, 3, and 6	Historical uses	VOCs by EPA 8260SV
SV11	Soil vapor	5', 15'	REC 1, 2, 3, and 6	Historical uses	VOCs by EPA 8260SV
SV12	Soil vapor	5', 15'	REC 1, 2, 3, and 6	Historical uses	VOCs by EPA 8260SV
SV13	Soil vapor	5', 15'	REC 1, 2, 3, and 6	Historical uses	VOCs by EPA 8260SV
SV14	Soil vapor	5', 15'	REC 1, 2, 3, and 6	Historical uses	VOCs by EPA 8260SV
SB001	Soil	10', 15', 20'	REC 2	Hydraulic lifts, auto shop	TPH-CC by EPA 8015M, PCBs by EPA 8082
SB002	Soil	10', 15', 20'	REC 2	Hydraulic lifts, auto shop	TPH-CC by EPA 8015M, PCBs by EPA 8082
SB003	Soil	10', 15', 20'	REC 2	Hydraulic lifts, auto shop	TPH-CC by EPA 8015M, PCBs by EPA 8082
SB004	Soil	10', 15', 20'	REC 2	Hydraulic lifts, auto shop	TPH-CC by EPA 8015M, PCBs by EPA 8082
SB005	Soil	10', 15', 20'	REC 2	Hydraulic lifts, auto shop	TPH-CC by EPA 8015M, PCBs by EPA 8082
SB006	Soil	10', 15', 20'	REC 2	Hydraulic lifts, auto shop	TPH-CC by EPA 8015M, PCBs by EPA 8082
SB007	Soil	10', 15', 20'	REC 2	Hydraulic lifts, auto shop	TPH-CC by EPA 8015M, PCBs by EPA 8082
SB008	Soil	4', 8'	REC 2	Clarifier outside auto shop	TPH-CC by EPA 8015M, VOCs by EPA 8260, PCBs by 8082
SB009	Soil	4', 8'	REC 2	Clarifier outside auto shop	TPH-CC by EPA 8015M, VOCs by EPA 8260, PCBs by 8083
SB010	Soil	10', 15'	REC 3	Historical grease pit	TPH-CC by EPA 8015M, VOCs by EPA 8260
SB011	Soil	10', 15'	REC 4	Historical cesspool/drywell	TPH-CC by EPA 8015M, VOCs by EPA 8260, PAHS by EPA 8270 SIM, Title 22 metals by EPA 6010B/7000
SB012	Soil	10', 15'	REC 4	Historical cesspool/drywell	TPH-CC by EPA 8015M, VOCs by EPA 8260, PAHS by EPA 8270 SIM, Title 22 metals by EPA 6010B/7000
SB013	Soil	10', 15'	REC 4	Historical septic tank	TPH-CC by EPA 8015M, VOCs by EPA 8260, PAHS by EPA 8270 SIM, Title 22 metals by EPA 6010B/7000
SB014	Soil	10', 15'	REC 4	Historical cesspool/drywell	TPH-CC by EPA 8015M, VOCs by EPA 8260, PAHS by EPA 8270 SIM, Title 22 metals by EPA 6010B/7000
SB015	Soil	5', 10', 15', 20', 25', 30', 35', 40'	REC 4	Historical cesspool/drywell	TPH-CC by EPA 8015M, VOCs by EPA 8260, PAHS by EPA 8270 SIM, Title 22 metals by EPA 6010B/7000
SB016	Soil	5', 10', 15', 20', 25', 30', 35', 40'	REC 4	Historical cesspool/drywell	TPH-CC by EPA 8015M, VOCs by EPA 8260, PAHS by EPA 8270 SIM, Title 22 metals by EPA 6010B/7000
SB017	Soil	5', 10', 15', 20', 25', 30', 35', 40'	REC 4	Historical septic tank	TPH-CC by EPA 8015M, VOCs by EPA 8260, PAHS by EPA 8270 SIM, Title 22 metals by EPA 6010B/7000
SB018	Soil	5', 10', 15', 20', 25', 30', 35', 40'	REC 4	Historical cesspool/drywell	TPH-CC by EPA 8015M, VOCs by EPA 8260, PAHS by EPA 8270 SIM, Title 22 metals by EPA 6010B/7000
SB019	Soil	5', 10', 15', 20', 25', 30', 35', 40'	REC 4	Historical septic tank	TPH-CC by EPA 8015M, VOCs by EPA 8260, PAHS by EPA 8270 SIM, Title 22 metals by EPA 6010B/7000
SB020	Soil	5', 10', 15', 20', 25', 30', 35', 40'	REC 4	Historical cesspool/drywell	TPH-CC by EPA 8015M, VOCs by EPA 8260, PAHS by EPA 8270 SIM, Title 22 metals by EPA 6010B/7000
SB021	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081, PCBs by EPA 8082
SB022	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB023	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB024	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB025	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB026	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB027	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB028	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB029	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB030	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB031	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081, PCBs by EPA 8082
SB032	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB033	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081

TABLE 1 NORTH HOLLYWOOD HIGH SCHOOL SAMPLE ANALYSIS PLAN

Davis - ID	N.A.A	Carrala Dantha	DECID	A of Co	Amaliata
Boring ID SB034	Matrix Soil	Sample Depths 0' to 0.5', 1' to 1.5', 2' to 2.5'	REC ID REC 7	Area of Concern Existing building exteriors	Analysis Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
	Soil				
SB035		0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB036	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB037	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB038	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB039	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB040	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB041	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081, PCBs by EPA 8082
SB042	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB043	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB044	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB045	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB046	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB047	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB048	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB049	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7		
				Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB050	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB051	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081, PCBs by EPA 8082
SB052	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB053	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB054	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB055	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB056	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB057	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB058	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB059	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB060	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB061	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081, PCBs by EPA 8082
SB062	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB063	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB064	Soil		REC 7		Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
		0' to 0.5', 1' to 1.5', 2' to 2.5'		Existing building exteriors	, , ,
SB065	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB066	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB067	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB068	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB069	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB070	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB071	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081, PCBs by EPA 8082
SB072	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB073	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB074	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB075	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB075	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB077	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
					, , ,
SB078	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB079	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB080	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB081	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081, PCBs by EPA 8082
SB082	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB083	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB084	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB085	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
	1	· · · · · · · · · · · · · · · · · · ·	<u>i</u>		

TABLE 1 NORTH HOLLYWOOD HIGH SCHOOL SAMPLE ANALYSIS PLAN

Boring ID	Matrix	Sample Depths	REC ID	Area of Concern	Analysis
SB086	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB087	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB088	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB089	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB090	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB091	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081, PCBs by EPA 8082
SB092	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB093	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB094	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB095	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB096	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB097	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB098	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB099	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB100	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB101	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081, PCBs by EPA 8082
SB102	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB103	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB104	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB105	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB106	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB107	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB108	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 7	Existing building exteriors	Lead and Arsenic by EPA 6010B, OCPs by EPA 8081
SB109	Soil	0' to 0.5', 1' to 1.5', 2' to 2.5'	REC 5	Shop - former incinerator	SVOCs by EPA 8270C, Title 22 metals by EPA 6010B/7000
BS01	Bulk	NA	REC 5	East Gym basement	SVOCs by EPA 8270C, Title 22 metals by EPA 6010B/7000


Notes:

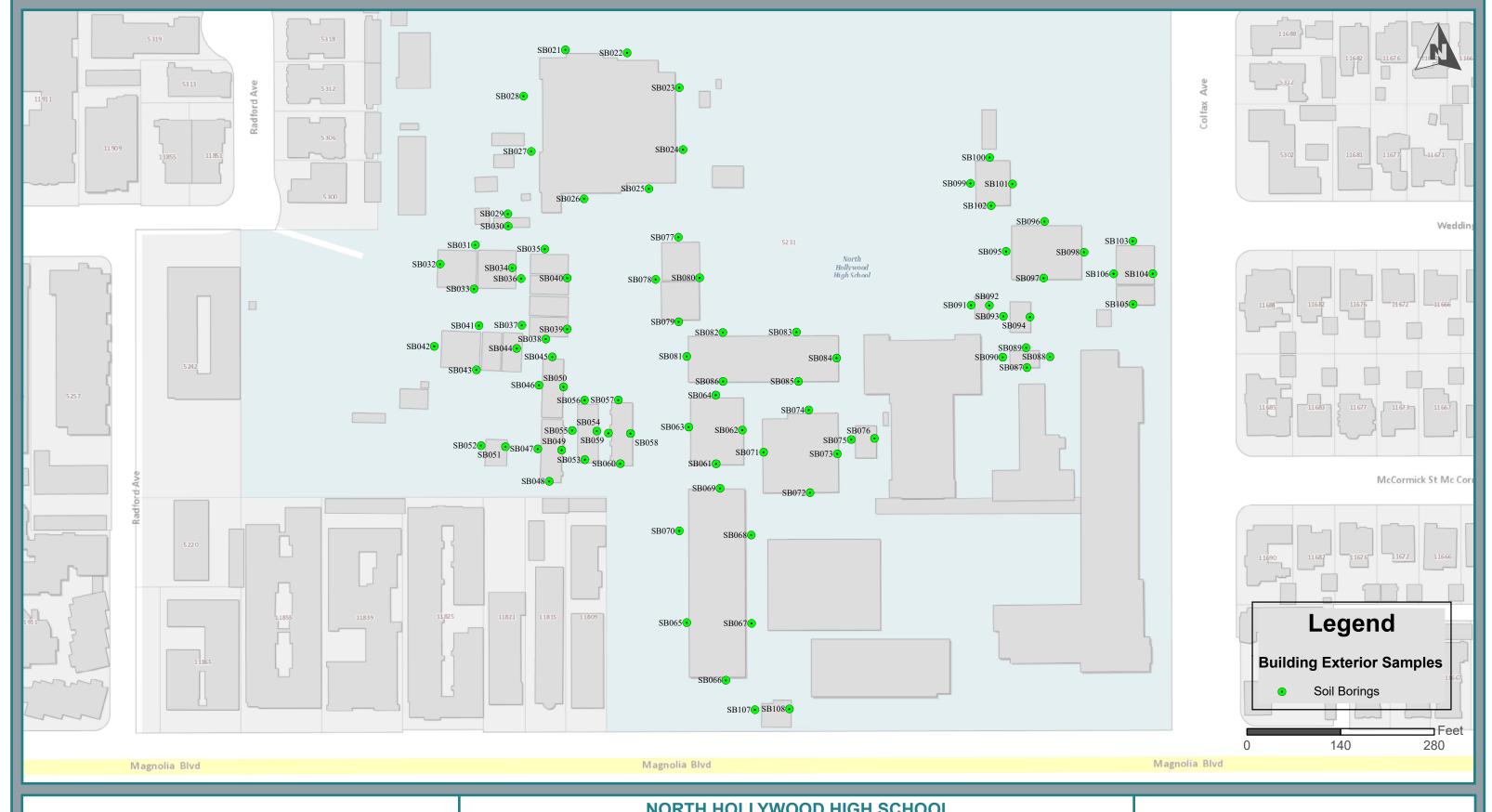
OCPs - organochlorine pesticides
PCBs - polychlorinated biphenyls

SVOCs - semivolatile organic compounds

TPH-CC - total petroleum hydrocarbons as carbon chain range C6 to C44

VOCs - volatile organic compounds

E2MANAGETECH COLLABORATE | INNOVATE | DELIVER


LOS ANGELES, CA 91601

SAMPLING LOCATION MAP

PROJECT NUMBER: 16-201-003

AUGUST 2016

FIGURE1

E2MANAGETECH

| DELIVER

COLLABORATE | INNOVATE

NORTH HOLLYWOOD HIGH SCHOOL 5231 COLFAX AVENUE LOS ANGELES, CA 91601

REC 7: SOIL SAMPLING LOCATION MAP

PROJECT NUMBER: 16-201-003

AUGUST 2016

FIGURE 2

APPENDIX B

Photos

Sample Location SB067 Area

Sample Location SB0041 Area

Sample Location SB100 Area

Sample Location SB102 Area

Sample Location SB094 Area

Sample Location SB069 Area

Sample Location SB043 Area

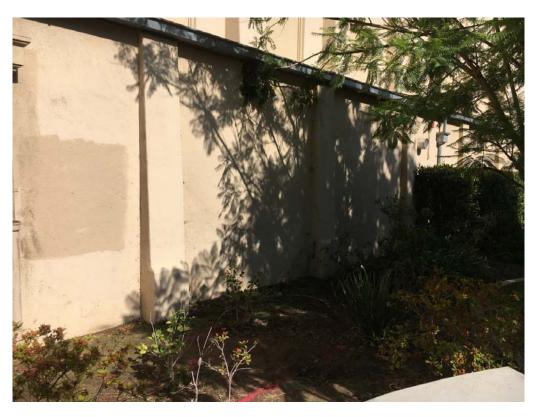
Sample Location SB051 Area

Sample Location SB065 Area

Sample Location SB068 Area

Sample Location SB061 Area

Sample Location SB109 Area


Sample Location SB072 Area

Sample Location SB071 Area

Sample Location SB114 Area

Sample Location SB115 Area

Sample Location SB119 Area

APPENDIX C

Copy of Community Notification

Los Angeles Unified School District

Office of Environmental Health and Safety

MICHELLE KING Superintendent of Schools

THELMA MELÉNDEZ, PH.D.

Chief Executive Officer, Office of Educational Services

ROBERT LAUGHTON

Director, Environmental Health and Safety

CARLOS A. TORRES

Deputy Director, Environmental Health and Safety

September 19, 2016

TO: Neighbors and Community Members of the

North Hollywood High School

FROM: Los Angeles Unified School District

Office of Environmental Health and Safety

REGARDING: Preliminary Environmental Assessment

North Hollywood High School, Los Angeles, California

The Los Angeles Unified School District (LAUSD) - Office of Environmental Health and Safety (OEHS) would like to provide you with advance notice of a Preliminary Environmental Assessment (PEA) that will be conducted within the boundaries of North Hollywood High School, located at 5231 Colfax Avenue, North Hollywood, California, 91601. The PEA will cover most of the campus scheduled to undergo a comprehensive modernization.

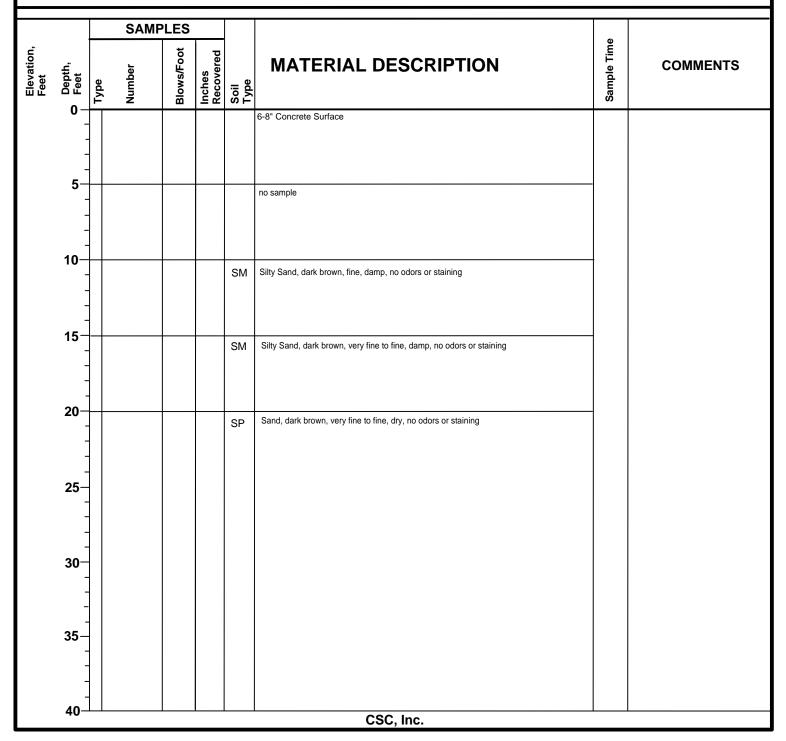
A licensed contractor, working on behalf of LAUSD, will perform the environmental investigation under the independent oversight of the LAUSD-OEHS, which is independent from the LAUSD Facilities Services Division (The Facilities Services Division is the responsible Branch for the development and construction of the project). The environmental investigation will consist of the sampling of soil and soil gas in the locations on campus where existing buildings will be demolished, new buildings will be constructed, where hydraulic hoists are located in shop buildings, where a clarifier/oil water separator is located outside the auto shop, and at the locations of historic cesspools, septic tanks, and dry wells. Soil will be analyzed for potential residual arsenic, hydrocarbons, lead-based paint, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), petroleum hydrocarbons, polycyclic aromatic hydrocarbons, and volatile organic compounds (VOCs) in soil. Soil gas will be analyzed for VOCs. If necessary, a soil cleanup will be performed prior to construction activities to protect students, faculty, and staff.

Fieldwork is scheduled to begin over the weekends starting September 29 and 30, 2016, and is expected to be completed over the course of 5 weekend days. All fieldwork is scheduled to be conducted when students are away from school, on the weekends, between 7:00 am and 5:00 pm.

The results of the investigation will be submitted to LAUSD-OEHS in a report for review. The report will include an assessment of whether any of the above listed compounds are present in soil at concentrations that would require further assessment or a response action before the Site is cleared for construction activities. When the OEHS's review is complete, OEHS will issue a determination with regard to the assessment.

If you have any questions concerning the upcoming environmental investigation or other related activities for the proposed comprehensive modernization of North Hollywood High School, please contact Dane Robinson, LAUSD Office of Environmental Health and Safety Site Assessment Project Manager, at (213) 241-4122 (email at dane.robinson@lausd.net).

Si desea información en español comuníquese con Fortunato Tapia de FSD Relaciones Comunitarias al (213) 241-1338 (línea directa) o (213) 241-1340 (línea principal) o por correo electrónico a fortunato.tapia@lausd.net.

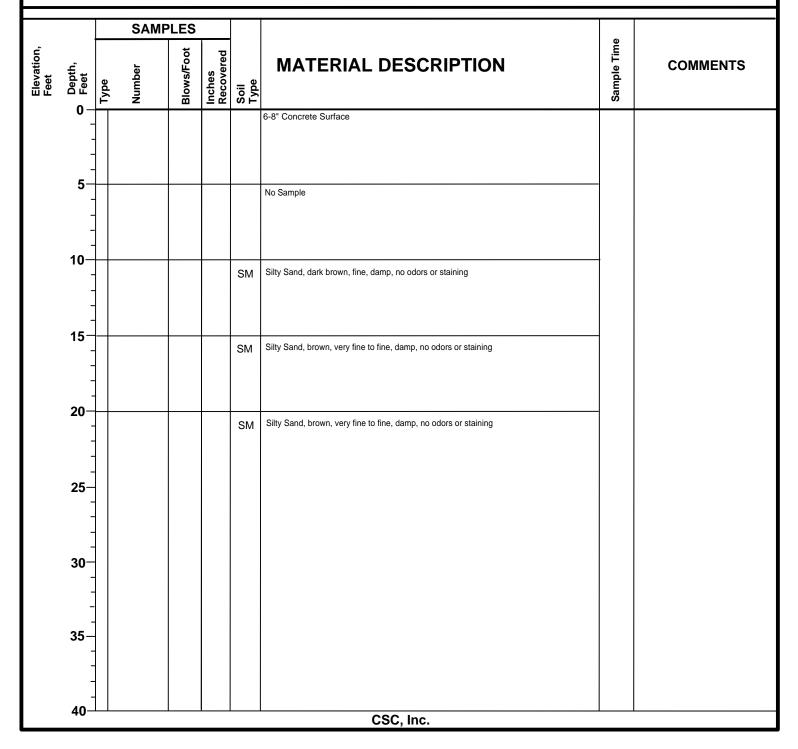

APPENDIX D

Soil Boring Logs

Project Number: 4007736

SB001Sheet 1 of 1

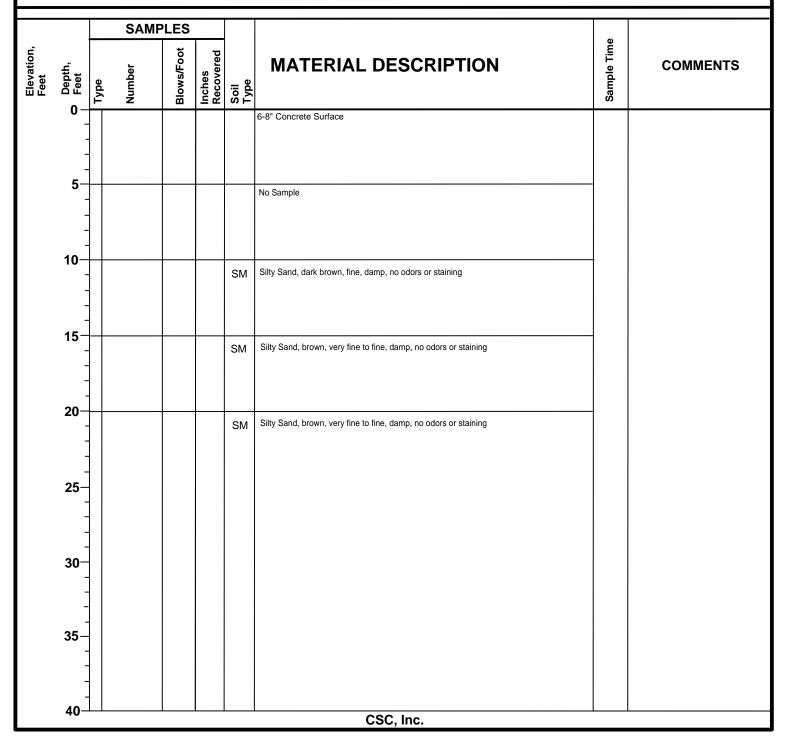
Date(s) November 19, 2016	Logged By A Garrett	Checked J Bannon
Drilling Direct-push Method	Drilling Contractor Kehoe Testing & Engineering	Total Depth of Borehole (ft bgs) 20'
Drill Rig Type Truck-mounted	Sampler Type split-spoon	Approx. Surface Elevation
Approx. Depth Groundwater Encountered	Drill Bit Size Type	Top of Casing Elevation
Borehole Diameter (inches) 2"	Type of Well Casing	Screen Perforation
Type of Sand Pack	Type and Depth of Seal(s)	



Project Number: 4007736

SB002

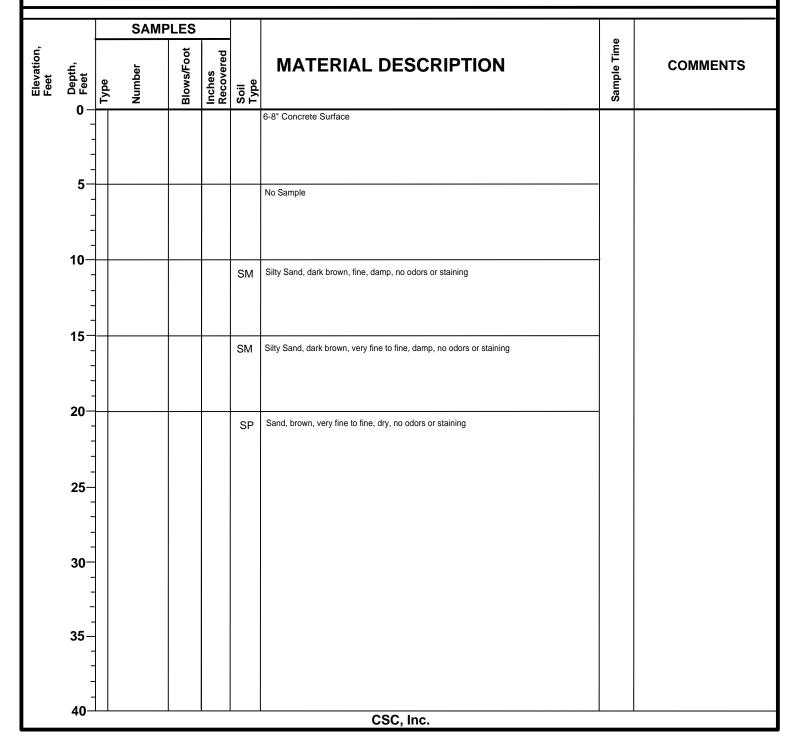
Sheet 1 of 1


Date(s) Drilled December 10, 2016	By A Garrett	Checked J Bannon
Drilling Direct-push Method	Drilling Contractor Kehoe Testing & Engineering	Total Depth of Borehole (ft bgs) 20.5'
Drill Rig Type Truck-mounted	Sampler Type split-spoon	Approx. Surface Elevation
Approx. Depth Groundwater Encountered	Drill Bit Size Type	Top of Casing Elevation
Borehole Diameter (inches) 2"	Type of Well Casing	Screen Perforation
Type of Sand Pack	Type and Depth of Seal(s)	

Project Number: 4007736

SB003Sheet 1 of 1

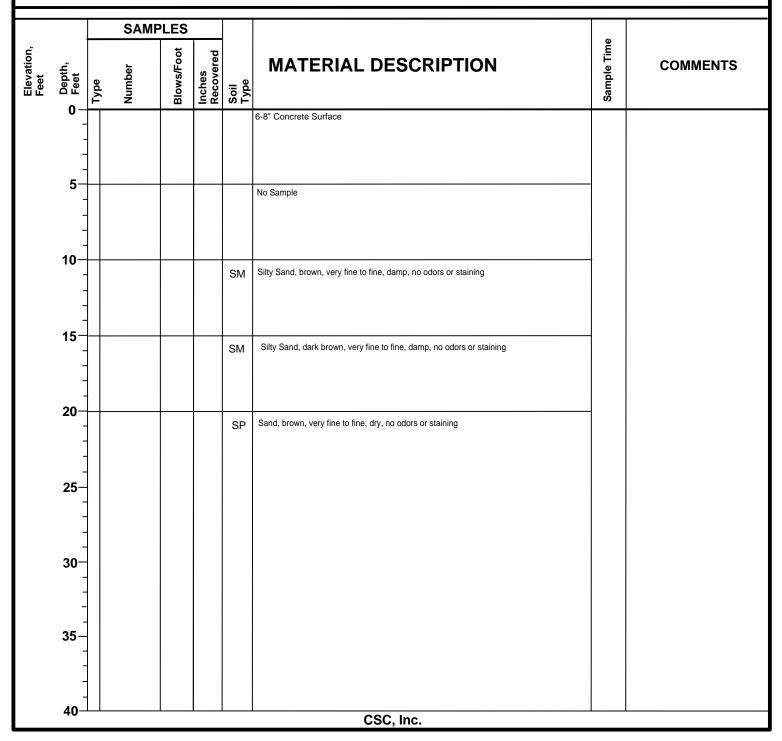
Date(s) Drilled December 10, 2016	Logged By A Garrett	Checked J Bannon By
Drilling Direct-push Method	Drilling Contractor Kehoe Testing & Engineering	Total Depth of Borehole (ft bgs) 20.5
Drill Rig Type Truck-mounted	Sampler Type split-spoon	Approx. Surface Elevation
Approx. Depth Groundwater Encountered	Drill Bit Size Type	Top of Casing Elevation
Borehole Diameter (inches) 2"	Type of Well Casing	Screen Perforation
Type of Sand Pack	Type and Depth of Seal(s)	



Project Number: 4007736

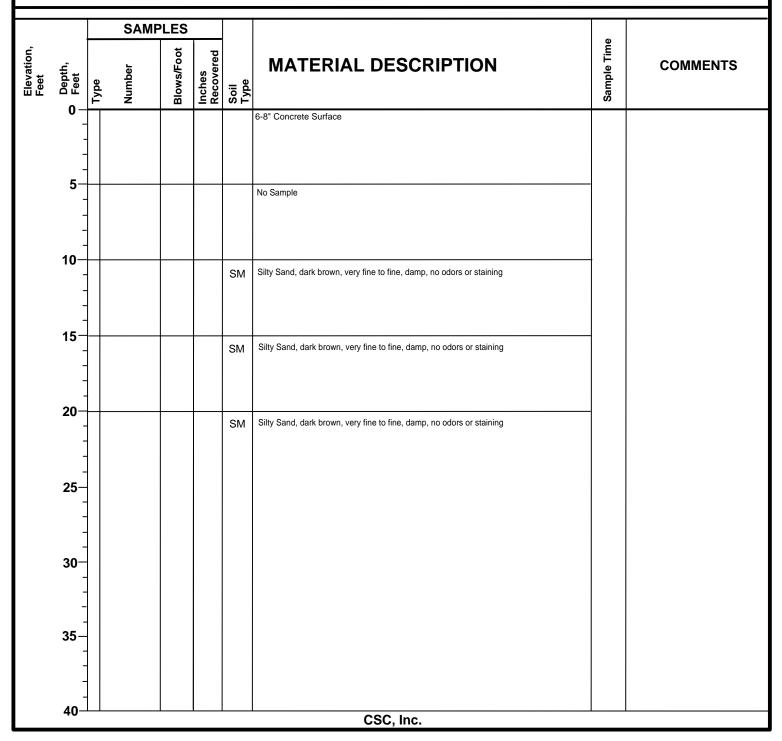
SB004

Sheet 1 of 1


Date(s) Drilled December 10, 2016	By A Garrett	Checked J Bannon
Drilling Direct-push Method	Drilling Contractor Kehoe Testing & Engineering	Total Depth of Borehole (ft bgs) 20.5'
Drill Rig Type Truck-mounted	Sampler Type split-spoon	Approx. Surface Elevation
Approx. Depth Groundwater Encountered	Drill Bit Size Type	Top of Casing Elevation
Borehole Diameter (inches) 2"	Type of Well Casing	Screen Perforation
Type of Sand Pack	Type and Depth of Seal(s)	

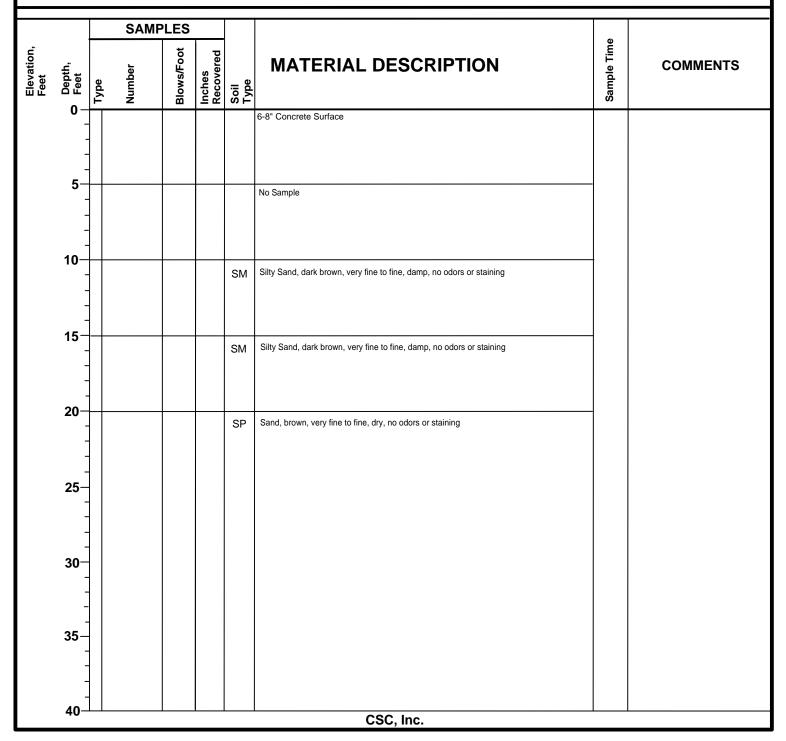
Project Number: 4007736

SB005Sheet 1 of 1


Date(s) December 10, 2016	Logged By A Garrett	Checked J Bannon
Drilling Direct-push Method	Drilling Contractor Kehoe Testing & Engineering	Total Depth of Borehole (ft bgs) 20.5'
Drill Rig Type Truck-mounted	Sampler Type split-spoon	Approx. Surface Elevation
Approx. Depth Groundwater Encountered	Drill Bit Size Type	Top of Casing Elevation
Borehole Diameter (inches) 2"	Type of Well Casing	Screen Perforation
Type of Sand Pack	Type and Depth of Seal(s)	

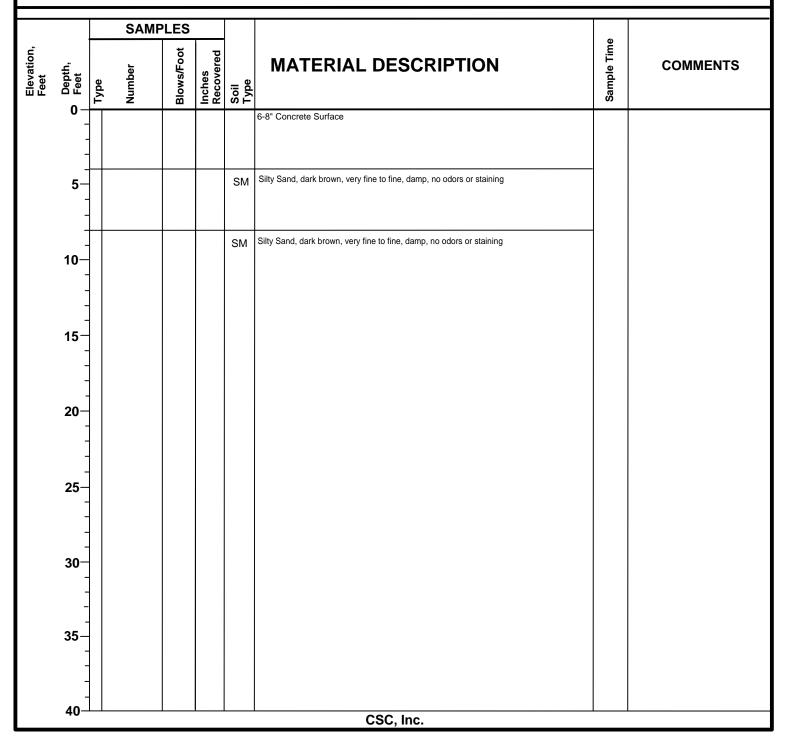
Project Number: 4007736

SB006 Sheet 1 of 1

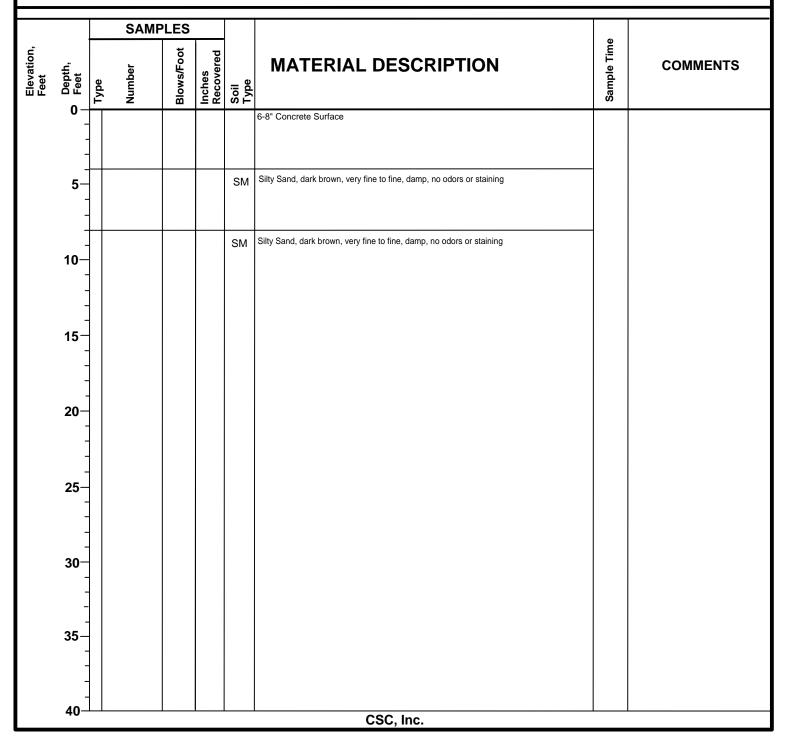

Date(s) Drilled December 10, 2016	Logged By A Garrett	Checked J Bannon
Drilling Direct-push Method	Drilling Contractor Kehoe Testing & Engineering	Total Depth of Borehole (ft bgs) 20.5
Drill Rig Type Truck-mounted	Sampler Type split-spoon	Approx. Surface Elevation
Approx. Depth Groundwater Encountered	Drill Bit Size Type	Top of Casing Elevation
Borehole Diameter (inches) 2"	Type of Well Casing	Screen Perforation
Type of Sand Pack	Type and Depth of Seal(s)	

Project Number: 4007736

SB007 Sheet 1 of 1


Date(s) Drilled December 10, 2016	Logged By A Garrett	Checked J Bannon
Drilling Direct-push Method	Drilling Contractor Kehoe Testing & Engineering	Total Depth of Borehole (ft bgs) 20.5'
Drill Rig Type Truck-mounted	Sampler Type split-spoon	Approx. Surface Elevation
Approx. Depth Groundwater Encountered	Drill Bit Size Type	Top of Casing Elevation
Borehole Diameter (inches) 2"	Type of Well Casing	Screen Perforation
Type of Sand Pack	Type and Depth of Seal(s)	

SB008

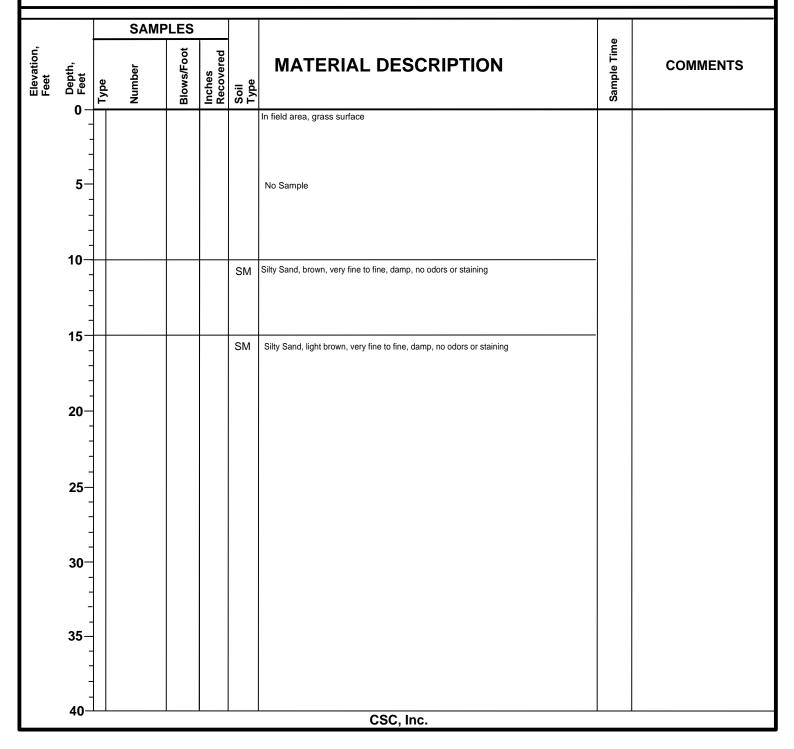

Sheet 1 of 1

Date(s) Drilled December 10, 2016	Logged By A Garrett	Checked By J Bannon
Drilling Direct-push Method	Drilling Contractor Kehoe Testing & Engineering	Total Depth of Borehole (ft bgs) 8.5'
Drill Rig Type Truck-mounted	Sampler Type split-spoon	Approx. Surface Elevation
Approx. Depth Groundwater Encountered	Drill Bit Size Type	Top of Casing Elevation
Borehole Diameter (inches) 2"	Type of Well Casing	Screen Perforation
Type of Sand Pack	Type and Depth of Seal(s)	

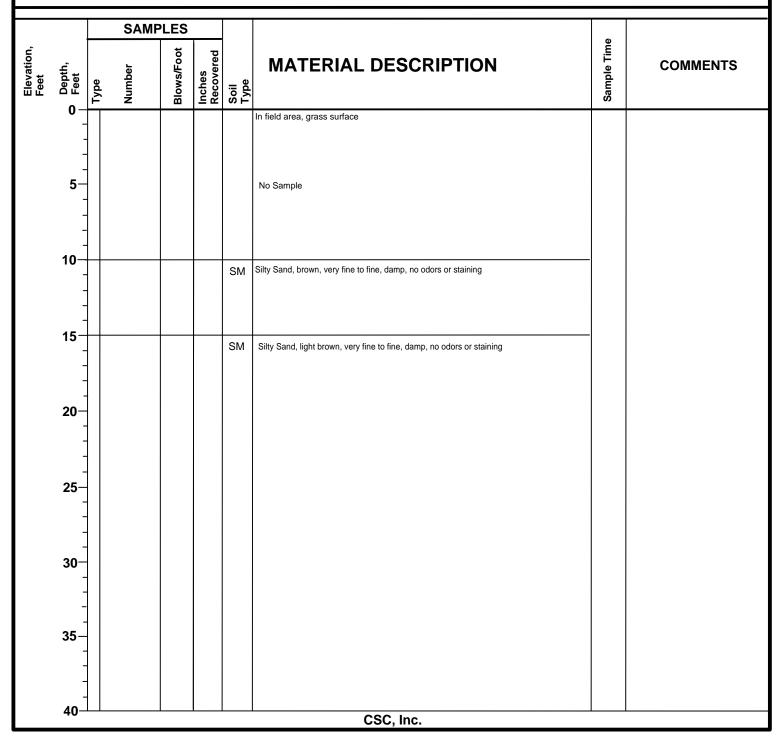
SB009 Sheet 1 of 1

Date(s) Drilled December 10, 2016	Logged By A Garrett	Checked J Bannon
Drilling Direct-push Method	Drilling Contractor Kehoe Testing & Engineering	Total Depth of Borehole (ft bgs) 8.5
Drill Rig Type Truck-mounted	Sampler Type split-spoon	Approx. Surface Elevation
Approx. Depth Groundwater Encountered	Drill Bit Size Type	Top of Casing Elevation
Borehole Diameter (inches) 2"	Type of Well Casing	Screen Perforation
Type of Sand Pack	Type and Depth of Seal(s)	

Project Number: 4007736


SB010Sheet 1 of 1

Date(s) Drilled November 19, 2016	Logged By A Garrett	Checked J Bannon By
Drilling Direct-push Method	Drilling Contractor Kehoe Testing & Engineering	Total Depth of Borehole (ft bgs) 15.5'
Drill Rig Type Truck-mounted	Sampler Type split-spoon	Approx. Surface Elevation
Approx. Depth Groundwater Encountered	Drill Bit Size Type	Top of Casing Elevation
Borehole Diameter (inches) 2"	Type of Well Casing	Screen Perforation
Type of Sand Pack	Type and Depth of Seal(s)	


SB011 Sheet 1 of 1

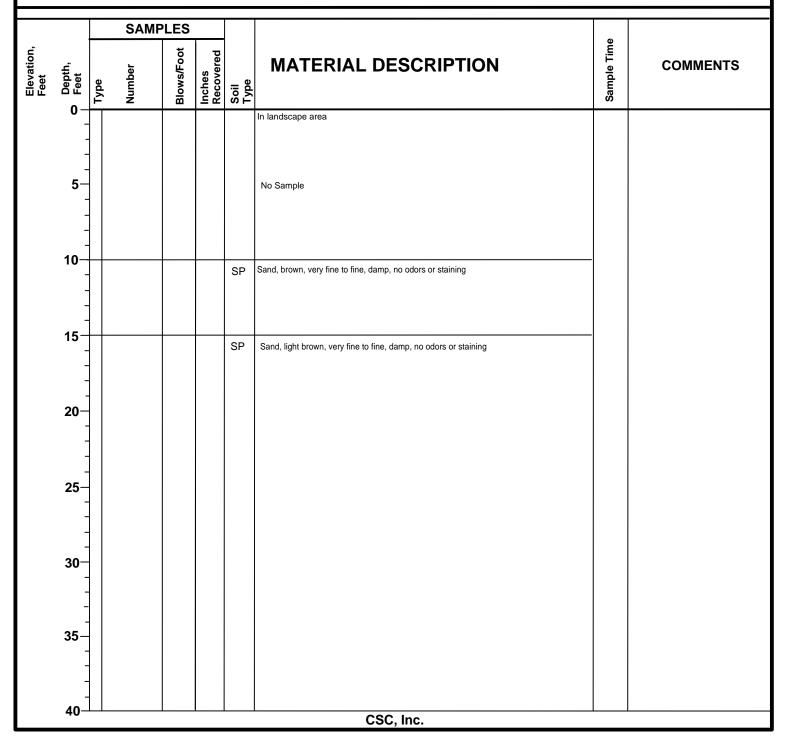
Date(s) Drilled November 20, 2016	Logged A Garrett	Checked J Bannon
Drilling Direct-push Method	Drilling Contractor Kehoe Testing & Engineering	Total Depth of Borehole (ft bgs) 15.5'
Drill Rig Type Truck-mounted	Sampler Type split-spoon	Approx. Surface Elevation
Approx. Depth Groundwater Encountered	Drill Bit Size Type	Top of Casing Elevation
Borehole Diameter (inches) 2"	Type of Well Casing	Screen Perforation
Type of Sand Pack	Type and Depth	

SB012 Sheet 1 of 1


Date(s)	Logged	Checked
Drilled November 20, 2016	By A Garrett	By J Bannon
Drilling Direct-push Method	Drilling Contractor Kehoe Testing & Engineering	Total Depth of Borehole (ft bgs) 15.5'
Drill Rig Type Truck-mounted	Sampler Type split-spoon	Approx. Surface Elevation
Approx. Depth	Drill Bit	Top of Casing
Groundwater Encountered	Size Type	Elevation
Borehole	Type of	Screen
Diameter (inches) 2"	Well Casing	Perforation
Type of Sand Pack	Type and Depth of Seal(s)	

SB013

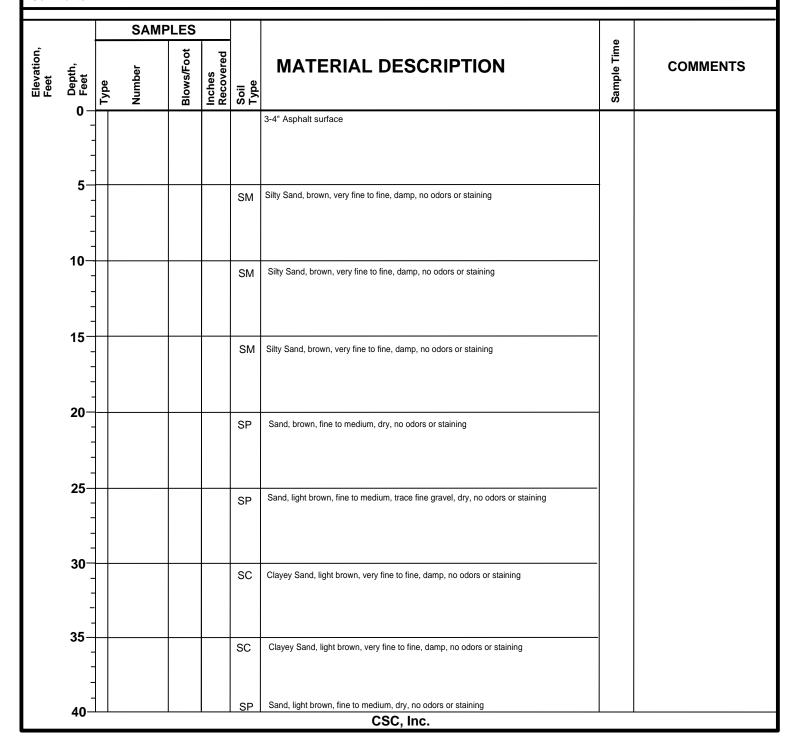
Sheet 1 of 1


Date(s) Drilled November 20, 2016	Logged By A Garrett	Checked By J Bannon
Drilling Direct-push Method	Drilling Contractor Kehoe Testing & Engineering	Total Depth of Borehole (ft bgs) 15.5
Drill Rig Type Truck-mounted	Sampler Type split-spoon	Approx. Surface Elevation
Approx. Depth Groundwater Encountered	Drill Bit Size Type	Top of Casing Elevation
Borehole Diameter (inches) 2"	Type of Well Casing	Screen Perforation
Type of Sand Pack	Type and Depth of Seal(s)	

SB014

Sheet 1 of 1

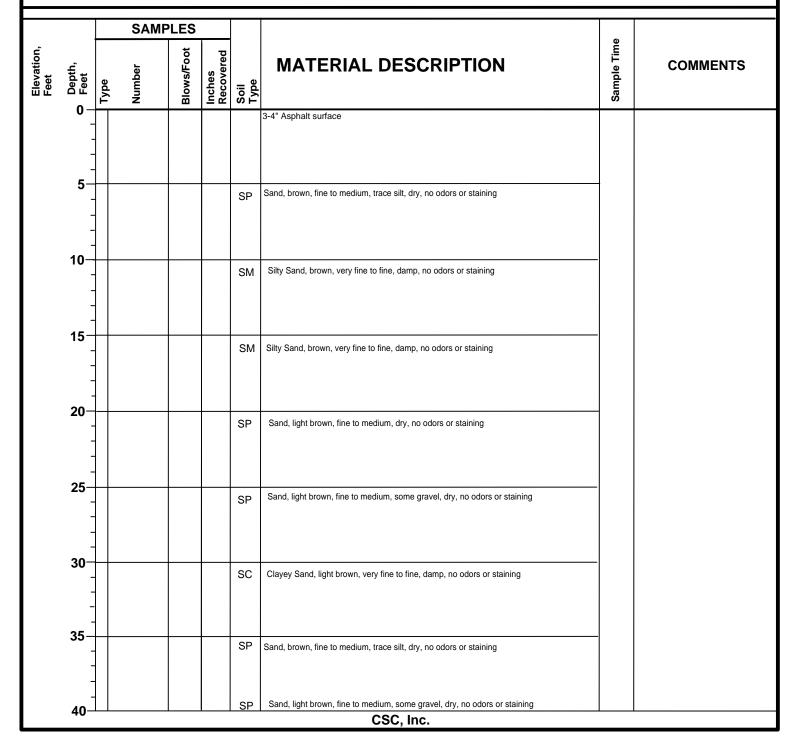
Date(s) December 3, 2016	Logged By A Garrett	Checked J Bannon
Drilling Direct-push Method	Drilling Contractor Kehoe Testing & Engineering	Total Depth of Borehole (ft bgs) 15.5'
Drill Rig Type Truck-mounted	Sampler Type split-spoon	Approx. Surface Elevation
Approx. Depth Groundwater Encountered	Drill Bit Size Type	Top of Casing Elevation
Borehole Diameter (inches) 2"	Type of Well Casing	Screen Perforation
Type of Sand Pack	Type and Depth of Seal(s)	



Project Number: 4007736

SB015

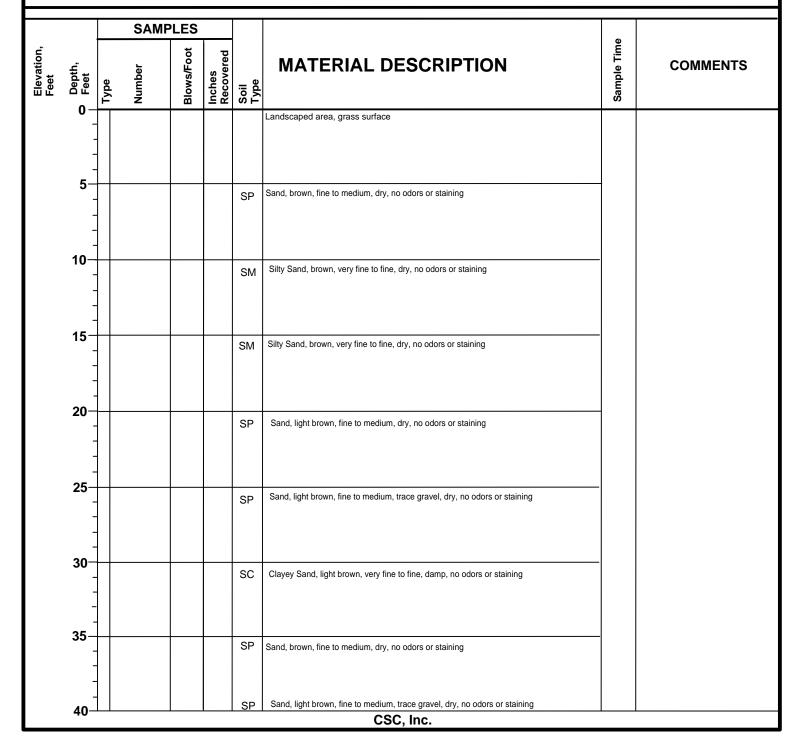
Sheet 1 of 1


Date(s) Drilled December 3, 2016	Logged By A Garrett	Checked J Bannon By
Drilling Direct-push Method	Drilling Contractor Kehoe Testing & Engineering	Total Depth of Borehole (ft bgs) 40.5
Drill Rig Type Truck-mounted	Sampler Type split-spoon	Approx. Surface Elevation
Approx. Depth Groundwater Encountered	Drill Bit Size Type	Top of Casing Elevation
Borehole Diameter (inches) 2"	Type of Well Casing	Screen Perforation
Type of Sand Pack	Type and Depth of Seal(s)	

Project Number: 4007736

SB016Sheet 1 of 1

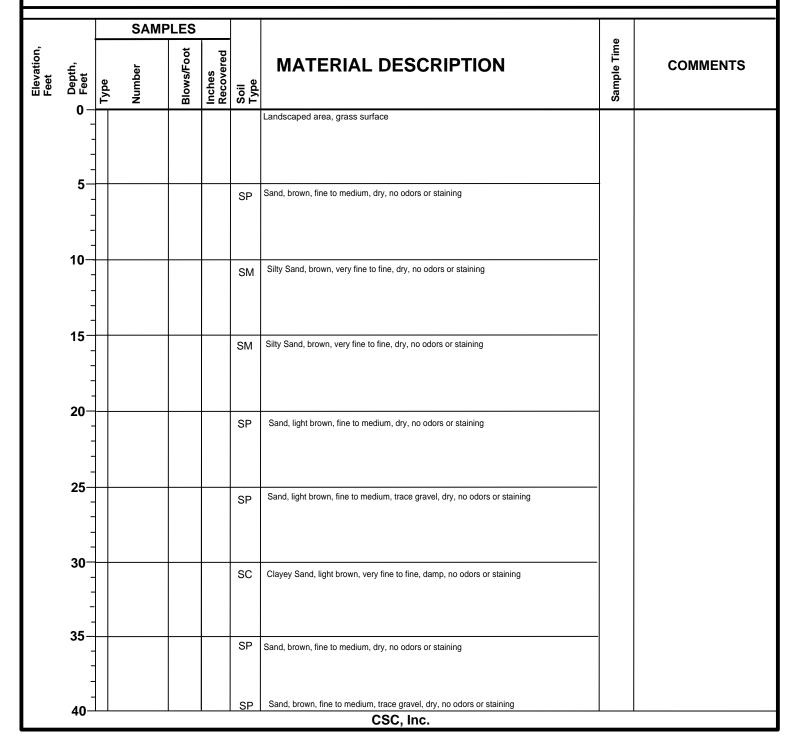
Date(s) Drilled December 3, 2016	Logged By A Garrett	Checked J Bannon
Drilling Direct-push Method	Drilling Contractor Kehoe Testing & Engineering	Total Depth of Borehole (ft bgs) 40.5
Drill Rig Type Truck-mounted	Sampler Type split-spoon	Approx. Surface Elevation
Approx. Depth Groundwater Encountered	Drill Bit Size Type	Top of Casing Elevation
Borehole Diameter (inches) 2"	Type of Well Casing	Screen Perforation
Type of Sand Pack	Type and Depth of Seal(s)	



Project Number: 4007736

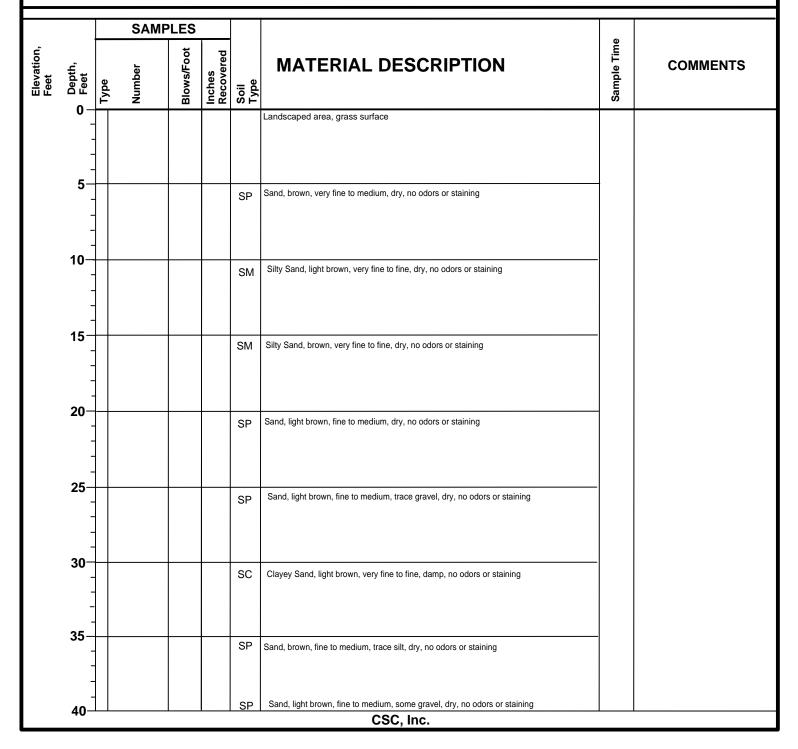
SB017

Sheet 1 of 1


Date(s) Drilled December 3, 2016	Logged By A Garrett	Checked J Bannon
Drilling Direct-push Method	Drilling Contractor Kehoe Testing & Engineering	Total Depth of Borehole (ft bgs) 40.5
Drill Rig Type Truck-mounted	Sampler Type split-spoon	Approx. Surface Elevation
Approx. Depth Groundwater Encountered	Drill Bit Size Type	Top of Casing Elevation
Borehole Diameter (inches) 2"	Type of Well Casing	Screen Perforation
Type of Sand Pack	Type and Depth of Seal(s)	

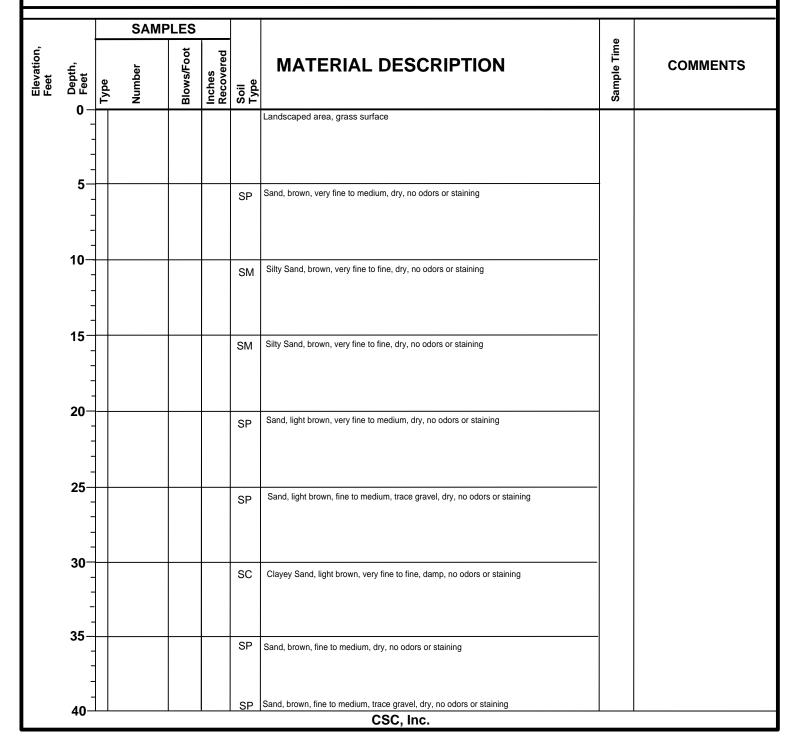
Project Number: 4007736

SB018Sheet 1 of 1


Date(s) Drilled December 10, 2016	Logged By A Garrett	Checked J Bannon
Drilling Direct-push Method	Drilling Contractor Kehoe Testing & Engineering	Total Depth of Borehole (ft bgs) 40.5
Drill Rig Type Truck-mounted	Sampler Type split-spoon	Approx. Surface Elevation
Approx. Depth Groundwater Encountered	Drill Bit Size Type	Top of Casing Elevation
Borehole Diameter (inches) 2"	Type of Well Casing	Screen Perforation
Type of Sand Pack	Type and Depth of Seal(s)	

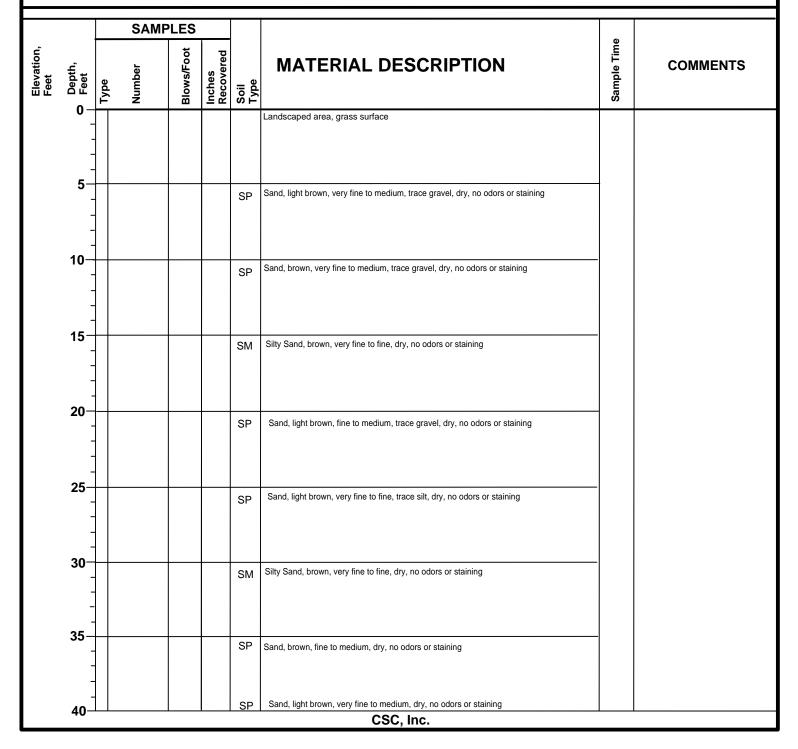
Project Number: 4007736

SB019Sheet 1 of 1


Date(s) December 3, 2016	Logged By A Garrett	Checked J Bannon
Drilling Direct-push Method	Drilling Contractor Kehoe Testing & Engineering	Total Depth of Borehole (ft bgs) 40.5
Drill Rig Type Truck-mounted	Sampler Type split-spoon	Approx. Surface Elevation
Approx. Depth Groundwater Encountered	Drill Bit Size Type	Top of Casing Elevation
Borehole Diameter (inches) 2"	Type of Well Casing	Screen Perforation
Type of Sand Pack	Type and Depth of Seal(s)	

Project Number: 4007736

SB020Sheet 1 of 1


Date(s) Drilled December 3, 2016	Logged By A Garrett	Checked J Bannon By
Drilling Direct-push Method	Drilling Contractor Kehoe Testing & Engineering	Total Depth of Borehole (ft bgs) 40.5
Drill Rig Type Truck-mounted	Sampler Type split-spoon	Approx. Surface Elevation
Approx. Depth Groundwater Encountered	Drill Bit Size Type	Top of Casing Elevation
Borehole Diameter (inches) 2"	Type of Well Casing	Screen Perforation
Type of Sand Pack	Type and Depth of Seal(s)	

Project Number: 4007736

SB110Sheet 1 of 1

Date(s) Drilled December 10, 2016	Logged By A Garrett	Checked J Bannon By
Drilling Direct-push Method	Drilling Contractor Kehoe Testing & Engineering	Total Depth of Borehole (ft bgs) 40.5
Drill Rig Type Truck-mounted	Sampler Type split-spoon	Approx. Surface Elevation
Approx. Depth Groundwater Encountered	Drill Bit Size Type	Top of Casing Elevation
Borehole Diameter (inches) 2"	Type of Well Casing	Screen Perforation
Type of Sand Pack	Type and Depth of Seal(s)	

APPENDIX E

Laboratory Analytical Results

I3554 Larwin Cir., Santa F€ Springs, CA 90670 T 562.926.9848 F 562.926.8324

Job No: 611024

Report Date: 02/09/17

Page 1

Certificate of Analysis

Client: CSC Project No.
110 Pine Ave Project Site:

Long Beach, CA

Attention: Aarron Garrett

Project Site: NHHS
5231 Colfax Ave

LA, CA

Date Received: 11/07/16
Number of Samples: 189
Sample Matrix: Soil

This is the Certificate of Analysis for the following samples:

SAMPLE IDENTIFICATION	DATE OF SAMPLE	LABORATORY IDENTIFICATION
SB021-0.5	11/05/16	611024-01A
SB021-1.5	11/05/16	611024-02A
SB021-2.5	11/05/16	611024-03A
SB022-0.5	11/05/16	611024-04A
SB022-1.5	11/05/16	611024-05A
SB022-2.5	11/05/16	611024-06A
SB023-0.5	11/05/16	611024-07A
SB023-1.5	11/05/16	611024-08A
SB023-2.5	11/05/16	611024-09A
SB024-0.5	11/05/16	611024-10A
SB024-1.5	11/05/16	611024-11A
SB024-2.5	11/05/16	611024-12A
SB025-0.5	11/06/16	611024-13A
SB025-1.5	11/06/16	611024-14A
SB025-2.5	11/06/16	611024-15A
SB026-0.5	11/06/16	611024-16A
SB026-1.5	11/06/16	611024-17A
SB026-2.5	11/06/16	611024-18A
SB027-0.5	11/06/16	611024-19A
SB027-1.5	11/06/16	611024-20A
SB027-2.5	11/06/16	611024-21A
SB028-0.5	11/06/16	611024-22A
SB028-1.5	11/06/16	611024-23A
SB028-2.5	11/06/16	611024-24A
SB039-0.5	11/06/16	611024-25A
SB039-1.5	11/06/16	611024-26A
SB039-2.5	11/06/16	611024-27A
SB040-0.5	11/06/16	611024-28A
SB040-1.5	11/06/16	611024-29A
SB040-2.5	11/06/16	611024-30A
SB049-0.5	11/06/16	611024-31A
SB049-1.5	11/06/16	611024-32A
SB049-2.5	11/06/16	611024-33A
SB050-0.5	11/06/16	611024-34A
SB050-1.5		
	11/06/16	611024-35A
SB050-2.5	11/06/16	611024-36A
SB055-0.5	11/06/16	611024-37A
SB055-1.5	11/06/16	611024-38A
SB055-2.5	11/06/16	611024-39A
SB056-0.5	11/06/16	611024-40A
SB056-1.5	11/06/16	611024-41A
SB056-2.5	11/06/16	611024-42A
SB057-0.5	11/06/16	611024-43A
SB057-1.5	11/06/16	611024-44A
SB057-2.5	11/06/16	611024-45A
SB062-0.5	11/06/16	611024-46A
SB062-1.5	11/06/16	611024-47A
SB062-2.5	11/06/16	611024-47A
3BUU2-2.3	11/00/10	V11047-70A

I3554 Larwin Cir., Santa F€ Springs, CA 90670 T 562.926.9848 F 562.926.8324

Page 2

Certificate of Analysis

Client: CSC Project No. Job No: 611024

110 Pine Ave Project Site: NHHS Report Date: 02/09/17
Long Beach, CA 5231 Colfax Ave Date Received: 11/07/16
LA, CA Number of Samples: 189

Attention: Aarron Garrett Sample Matrix: Soil

This is the Certificate of Analysis for the following samples:

SAMPLE IDENTIFICATION	DATE OF SAMPLE	LABORATORY IDENTIFICATION
SB064-0.5	11/06/16	611024-49A
SB064-1.5	11/06/16	611024-50A
SB064-2.5	11/06/16	611024-51A
SB065-0.5	11/06/16	611024-52A
SB065-1.5	11/06/16	611024-53A
SB065-2.5	11/06/16	611024-54A
SB066-0.5	11/06/16	611024-55A
SB066-1.5	11/06/16	611024-56A
SB066-2.5	11/06/16	611024-57A
SB067-0.5	11/06/16	611024-58A
SB067-1.5	11/06/16	611024-59A
SB067-2.5	11/06/16	611024-60A
SB068-0.5	11/06/16	611024-61A
SB068-1.5	11/06/16	611024-62A
SB068-2.5	11/06/16	611024-63A
SB069-0.5	11/06/16	611024-64A
SB069-1.5	11/06/16	611024-65A
SB069-2.5	11/06/16	611024-66A
SB071-0.5	11/06/16	611024-67A
SB071-1.5	11/06/16	611024-68A
SB071-2.5	11/06/16	611024-69A
SB072-0.5	11/06/16	611024-70A
SB072-1.5	11/06/16	611024-71A
SB072-2.5	11/06/16	611024-72A
SB073-0.5	11/06/16	611024-73A
SB073-1.5	11/06/16	611024-74A
SB073-2.5	11/06/16	611024-75A
SB074-0.5	11/06/16	611024-76A
SB074-1.5	11/06/16	611024-77A
SB074-2.5	11/06/16	611024-78A
SB075-0.5	11/06/16	611024-79A
SB075-1.5	11/06/16	611024-80A
SB075-2.5	11/06/16	611024-81A
SB076-0.5	11/06/16	611024-82A
SB076-1.5	11/06/16	611024-83A
SB076-2.5	11/06/16	611024-84A
SB077-0.5	11/06/16	611024-85A
SB077-1.5	11/06/16	611024-86A
SB077-2.5	11/06/16	611024-87A
SB079-0.5	11/06/16	611024-88A
SB079-1.5	11/06/16	611024-89A
SB079-2.5	11/06/16	611024-90A
SB080-0.5	11/06/16	611024-91A
SB080-1.5	11/06/16	611024-92A
SB080-2.5	11/06/16	611024-93A
	11/06/16	611024-94A
SB081-0.5 SB081-1.5	11/06/16	611024-95A
SB081-2.5	11/06/16	611024-95A 611024-96A
20001-2:0	11/00/10	V11027 VVA

I3554 Larwin Cir., Santa F€ Springs, CA 90670 T 562.926.9848 F 562.926.8324

Job No: 611024

Page 3

Certificate of Analysis

Client: CSC Project No.

110 Pine Ave Project Site: NHHS F

110 Pine Ave Project Site: NHHS Report Date: 02/09/17
Long Beach, CA 5231 Colfax Ave Date Received: 11/07/16
LA, CA Number of Samples: 189

Attention: Aarron Garrett Sample Matrix: Soil

This is the Certificate of Analysis for the following samples:

SAMPLE IDENTIFICATION	DATE OF SAMPLE	LABORATORY IDENTIFICATION
SB082-0.5	11/06/16	611024-97A
SB082-1.5	11/06/16	611024-98A
SB082-2.5	11/06/16	611024-99A
SB083-0.5	11/06/16	611024-100A
SB083-1.5	11/06/16	611024-101A
SB083-2.5	11/06/16	611024-102A
SB084-0.5	11/06/16	611024-103A
SB084-1.5	11/06/16	611024-104A
SB084-2.5	11/06/16	611024-105A
SB085-0.5	11/06/16	611024-106A
SB085-1.5	11/06/16	611024-107A
SB085-2.5	11/06/16	611024-108A
SB086-0.5	11/06/16	611024-109A
SB086-1.5	11/06/16	611024-110A
SB086-2.5	11/06/16	611024-111A
SB087-0.5	11/05/16	611024-112A
SB087-1.5	11/05/16	611024-113A
SB087-2.5	11/05/16	611024-114A
SB088-0.5	11/05/16	611024-115A
SB088-1.5	11/05/16	611024-116A
SB088-2.5	11/05/16	611024-117A
SB089-0.5	11/05/16	611024-118A
SB089-1.5	11/05/16	611024-119A
SB089-2.5	11/05/16	611024-120A
SB090-0.5	11/05/16	611024-121A
SB090-1.5	11/05/16	611024-122A
SB090-2.5	11/05/16	611024-123A
SB091-0.5	11/05/16	611024-124A
SB091-1.5	11/05/16	611024-125A
SB091-2.5	11/05/16	611024-126A
SB092-0.5	11/05/16	611024-127A
SB092-1.5	11/05/16	611024-128A
SB092-2.5	11/05/16	611024-129A
SB093-0.5	11/05/16	611024-130A

SB093-1.5	11/05/16	611024-131A
SB093-2.5	11/05/16	611024-132A
SB094-0.5	11/05/16	611024-133A
SB094-1.5	11/05/16	611024-134A
SB094-2.5	11/05/16	611024-135A
SB095-0.5	11/05/16	611024-136A
SB095-1.5	11/05/16	611024-137A
SB095-2.5	11/05/16	611024-138A
SB096-0.5	11/05/16	611024-139A
SB096-1.5	11/05/16	611024-140A
	11/05/16	611024-141A
SB096-2.5	11/05/16	611024-141A 611024-142A
SB097-0.5	11/05/16	611024-142A 611024-143A
SB097-1.5	11/05/16	611024-143A 611024-144A
SB097-2.5	11/03/10	VIIV27-177A

Client: CSC

ELAP: 1435 LACSD: 10167 I3554 Larwin Cir., Santa F€ Springs, CA 90670 T 562.926.9848 F 562.926.8324

Certificate of Analysis

Project No. Job No: 611024

110 Pine Ave Project Site: NHHS Report Date: 02/09/17
Long Beach, CA 5231 Colfax Ave Date Received: 11/07/16
LA, CA Number of Samples: 189

Attention: Aarron Garrett Sample Matrix: Soil

This is the Certificate of Analysis for the following samples:

SAMPLE IDENTIFICATION	DATE OF SAMPLE	LABORATORY IDENTIFICATION
SB098-0.5	11/05/16	611024-145A
SB098-1.5	11/05/16	611024-146A
SB098-2.5	11/05/16	611024-147A
SB099-0.5	11/05/16	611024-148A
SB099-1.5	11/05/16	611024-149A
SB099-2.5	11/05/16	611024-150A
SB100-0.5	11/05/16	611024-151A
SB100-1.5	11/05/16	611024-152A
SB100-2.5	11/05/16	611024-153A
SB101-0.5	11/05/16	611024-154A
SB101-1.5	11/05/16	611024-155A
SB101-2.5	11/05/16	611024-156A
SB102-0.5	11/05/16	611024-157A
SB102-1.5	11/05/16	611024-158A
SB102-2.5	11/05/16	611024-159A
SB103-0.5	11/05/16	611024-160A
SB103-1.5	11/05/16	611024-161A
SB103-2.5	11/05/16	611024-162A
SB104-0.5	11/05/16	611024-163A
SB104-1.5	11/05/16	611024-164A
SB104-2.5	11/05/16	611024-165A
SB105-0.5	11/05/16	611024-166A
SB105-1.5	11/05/16	611024-167A
SB105-2.5	11/05/16	611024-168A
SB106-0.5	11/05/16	611024-169A
SB106-1.5	11/05/16	611024-170A
SB106-2.5	11/05/16	611024-171A
SB107-0.5	11/05/16	611024-172A
SB107-1.5	11/05/16	611024-173A
SB107-2.5	11/05/16	611024-174A
SB108-0.5	11/05/16	611024-175A
SB108-1.5	11/05/16	611024-176A
SB108-2.5	11/05/16	611024-177A
SB109-0.5	11/05/16	611024-178A
SB109-1.5	11/05/16	611024-179A
SB109-2.5	11/05/16	611024-180A
SB038-0.5	11/05/16	611024-181A
SB038-1.5	11/05/16	611024-182A
SB038-2.5		
	11/05/16	611024-183A
SB044-0.5	11/05/16	611024-184A
SB044-1.5	11/05/16	611024-185A
SB044-2.5	11/05/16	611024-186A
SB045-0.5	11/05/16	611024-187A
SB045-1.5	11/05/16	611024-188A
SB045-2.5	11/05/16	611024-189A

Reviewed and Approved:

Michael C.C. Lu
For Laboratory Director

Page 4

LA, CA

Certificate of Analysis

Job No: 611024

Page 5

Client: CSC Project Site: NHHS **Report Date:** 02/09/17 5231 Colfax Ave

Date of Sample: 11-05/06-16 Date Received: 11/07/16 Sample Matrix: Soil

EPA Method: 6010B Metals Units: ppm or mg/Kg

EPA Method:	601	0B Metals	Units:	ppm or m	ng/Kg
		Client Sample ID:	Arsenic	Lead	Analysis Date
	DF		1	1	
Analyte		Detection Limit	2.00	2.00	
SB021-0.5	1	ppm	ND	ND	11/16/2016
SB022-0.5	1	ppm	ND	ND	11/16/2016
SB023-0.5	1	ppm	ND	ND	11/16/2016
SB024-0.5	1		ND	ND ND	11/16/2016
	1	ppm	ND	ND	
SB025-0.5		ppm			11/16/2016
SB026-0.5	1	ppm	ND	7.67	11/16/2016
SB027-0.5	1	ppm	ND	11.3	11/16/2016
SB028-0.5	1	ppm	ND	2.09	11/16/2016
SB039-0.5	1	ppm	ND	2.30	11/16/2016
SB040-0.5	1	ppm	ND	ND	11/16/2016
SB049-0.5		ppm	ND	9.89	11/16/2016
SB050-0.5	1	ppm	ND	ND	11/16/2016
SB055-0.5	1	ppm	ND	ND	11/16/2016
SB056-0.5	1	ppm	ND	ND	11/16/2016
SB057-0.5	1	ppm	ND	ND	11/16/2016
SB062-0.5	1	ppm	ND	16.1	11/16/2016
SB064-0.5	1	ppm	ND	ND	11/16/2016
SB065-0.5	1	ppm	ND	149	11/16/2016
SB066-0.5	1	ppm	ND	48.2	11/16/2016
SB067-0.5	1	ppm	ND	207	11/16/2016
SB068-0.5	1	ppm	2.80	211	11/16/2016
SB069-0.5	1	ppm	2.48	131	11/16/2016
SB071-0.5	1	ppm	11.2	130	11/16/2016
SB072-0.5	1	ppm	ND	94.2	11/16/2016
SB073-0.5	1	ppm	ND	8.66	11/16/2016
SB074-0.5	1	ppm	ND	12.5	11/16/2016
SB075-0.5	1	ppm	ND	16.8	11/16/2016
SB076-0.5	1	ppm	ND	37.9	11/16/2016
SB077-0.5	1	ppm	ND	4.19	11/16/2016
SB079-0.5	1	ppm	ND	ND	11/16/2016
SB080-0.5	1	ppm	ND	4.66	11/16/2016
SB081-0.5	1		ND	ND	11/16/2016
SB081-0.5 SB082-0.5	1	ppm	ND	ND	11/16/2016
	<u>'</u>	ppm	ND ND	4.53	
SB083-0.5 SB084-0.5	1	ppm	ND ND	19.4	11/16/2016 11/16/2016
	<u> </u>	ppm			
SB085-0.5		ppm	ND	17.8	11/16/2016
SB086-0.5	1	ppm	ND	64.6	11/16/2016
SB087-0.5	1	ppm	ND	3.64	11/16/2016
SB088-0.5	1	ppm	ND	23.7	11/16/2016
SB089-0.5	1	ppm	ND	71.6	11/16/2016
SB090-0.5	1	ppm	ND	6.18	11/16/2016
SB091-0.5	1	ppm	ND	2.42	11/16/2016
SB092-0.5	1	ppm	ND	ND	11/16/2016
SB093-0.5		ppm	ND	5.06	11/16/2016
SB094-0.5	1	ppm	ND	81.4	11/16/2016
SB095-0.5	1	ppm	9.15	16.1	11/16/2016
SB096-0.5	1	ppm	2.19	13.1	11/16/2016
SB097-0.5	1	ppm	ND	76.1	11/16/2016
SB098-0.5	1	ppm	2.56	37.9	11/16/2016
SB099-0.5	1	ppm	5.39	15.3	11/16/2016

ND: Not Detected Below (DF x Detection Limit)

Certificate of Analysis

5231 Colfax Ave

LA, CA

Client: CSC

Project Site: NHHS

Job No: 611024 Report Date: 02/09/17 Date of Sample: 11-05/06-16

> Date Received: 11/07/16 Sample Matrix: Soil

Page 6

EPA Method: 6010B Metals **Units:** ppm or mg/Kg

EPA Method:	001	TOD METAIS	Ullits.	ppm or m	ilig/Ng
		Client Sample ID:	Arsenic	Lead	Analysis Date
	DF		1	1	
Analyte		Detection Limit	2.00	2.00	
SB100-0.5	1	ppm	ND	125	11/16/2016
SB101-0.5	1	ppm	ND	64.5	11/16/2016
SB102-0.5	1	ppm	54.5	49.5	11/16/2016
SB103-0.5	1	ppm	3.37	7.13	11/16/2016
SB104-0.5	1	ppm	ND	12.8	11/16/2016
SB105-0.5	1	ppm	3.54	20.6	11/16/2016
SB106-0.5	1	ppm	ND	22.3	11/16/2016
SB107-0.5	1	ppm	ND	10.5	11/16/2016
SB108-0.5	1	ppm	ND	20.3	11/16/2016
SB109-0.5	1	ppm	2.13	101	11/16/2016
SB038-0.5	1	ppm	ND	9.75	11/16/2016
SB044-0.5	1	ppm	ND	ND	11/16/2016
SB045-0.5	1	ppm	ND	ND	11/16/2016
35043-0.3	- '	ррш	ND	IND	11/10/2010
CD065 4 5	1	mmr-		0.0	11/05/0010
SB065-1.5		ppm		8.9	11/25/2016
SB067-1.5	1	ppm		14.6	11/25/2016
SB068-1.5	1	ppm		50.7	11/25/2016
SB069-1.5	1	ppm		11.8	11/25/2016
SB071-1.5	1	ppm		91.8	11/25/2016
SB072-1.5	1	ppm		2.05	11/25/2016
SB094-1.5	1	ppm		155	11/25/2016
SB100-1.5	1	ppm		3.13	11/25/2016
SB102-1.5	1	ppm	ND		11/25/2016
SB71-2.5	1	ppm	ND	3.44	1/25/2017
SB94-2.5	1	ppm	2.88	71.1	1/25/2017
SB109-2.5	1	ppm	ND	88.8	1/25/2017
SB109-1.5	1	ppm		132	1/31/2017

ND: Not Detected Below (DF x Detection Limit)

Certificate of Analysis

Page 7

 Client: CSC
 Job No: 612068

 Project Site: NHHS
 Report Date: 02/09/17

 Project No:
 Date of Sample: 11-05/06-16

 Date Received: 11/07/16

Date Received: 11/07/16
Sample Matrix: Soil

EPA Method: 6010B Metals **Units:** ppm or mg/Kg

	Client Sample ID: SB109-0.5	Detection
	Dilution Factor: 1	Limit
Analyte	(ppm)	(ppm)
Antimony	ND	2.00
Arsenic	2.13	2.00
Barium	9.49	1.00
Beryllium	ND	1.00
Cadmium	ND	1.00
Chromium	ND	1.00
Cobalt	24.2	2.00
Copper	ND	2.00
Lead	101	2.00
Molybdenum	ND	2.00
Nickel	3.70	2.00
Selenium	ND	2.00
Silver	ND	1.00
Thallium	ND	2.00
Vanadium	ND	2.00
Zinc	508	5.00

Analysis Date: 11/18/16

EPA Method: 7471A Mercury **Units:** ppm or mg/Kg

CI	lient Sample ID: SB109-0.5	Detection
	Dilution Factor: 1	Limit
Analyte	(ppm)	(ppm)
Mercury	ND	0.05

Analysis Date: 11/18/16

ND: Not Detected Below (DF x Detection Limit)

I3554 Larwin Cir., Santa F€ Springs, CA 90670 T 562.926.9848 F 562.926.8324

Certificate of Analysis

Page 8

 Client: CSC
 Job No: 611024A

 Project Site: NHHS
 Report Date: 02/09/17

5231 Colfax Ave Date of Sample: 11/06/16
Extraction Method STLC (W.E.T Method) Date Received: 11/07/16

Extraction Date 2/3/2017 Sample Matrix: Aqueous(STLC Extract)

EPA Method: 6010B Metals Units: ppm or mg/l

	Client Sample ID: SB68-0.5	B102-0.5	Detection
	Dilution Factor: 2	2	Limit
Analyte	(ppm)	(ppm)	(ppm)
Lead	17.9		0.01
Arsenic		6.07	
	Analysis Date: 2/9/17	2/9/17	

Extraction Method TCLP Date Received: 11/07/16

Extraction Date 2/3/2017 Sample Matrix: Aqueous(TCLP Extract)

EPA Method: 6010B Metals **Units**: ppm or mg/l

	Client Sample ID: \$	B68-0.5	Detection
	Dilution Factor:	2	Limit
Analyte		(ppm)	(ppm)
Lead		0.45	0.01
	Analysis Date:	2/9/17	

ND: Not Detected Below (DF x Detection Limit)

Page 9

Client: CSC

Sample Matrix: Soil

Certificate of Analysis

Project No. Job No: 611024
Project Site: NHHS Report Date: 02/09/17

Date of Sample: 11/05/16
EPA Method: 8270C
Units: ppb or μg/kg
Date Received: 11/07/16

011	0040005	
Client Sample ID: Dilution Factor:	SB109-0.5	Deter Lii
Dilation ractor.	(ppb)	(p)
Phenol	ND	20
bis(2-Chloroethyl)Ether	ND ND	20
2-Chlorophenol	ND	20
1,3-Dichlorobenzene	ND	20
1,4-Dichlorobenzene	ND	20
Benzyl alcohol	ND	20
1,2-Dichlorobenzene	ND	20
2-Methylphenol(O-cresol)	ND	20
bis(2-Chloroisopropyl)Ether	ND	20
n-Nitroso-di-n-Propylamine	ND	20
4-Methylphenol(P-cresol)	ND	20
Hexachloroethane	ND	20
Nitrobenzene	ND ND	20
Isophorone	ND ND	20
-	ND	
2-Nitrophenol		20
2,4-Dimethylphenol	ND	20
bis(2-Chloroethoxy) Methane	ND	20
2,4-Dichlorophenol	ND ND	40
1,2,4-Trichlorobenzene	ND	20
Naphthalene	ND	20
4-Chloroaniline	ND	20
Hexachlorobutadiene	ND	20
4-Chloro-3-Methylphenol	ND	20
2-Methlynaphthalene	ND	20
Hexachlorocyclopentadiene	ND	20
2,4,6-Trichlorophenol	ND	20
2,4,5-Trichlorophenol	ND	20
2-Chloronaphthalene	ND	20
2-Nitroaniline	ND	20
Dimethyl Phthalate	ND	20
Acenaphthylene	ND	20
2,6-Dinitrotoluene	ND	20
3-Nitroaniline	ND	20
Carbazole	ND	20
Benzoic Acid	ND	86
Acenaphthene	ND	20
2,4-Dinitrophenol	ND	20
Dibenzofuran	ND	20
4-Nitrophenol	ND	20
2,4-Dinitrotoluene	ND	20
Fluorene	ND	20
Diethyl Phthalate	ND	20
4-Chlorophenyl Phenyl Ether	ND	20
4-Nitroaniline	ND	20
4,6-Dinitro-2-methylphenol	ND	40
N-Nitrosodiphenylamine	ND	20
4-Bromophenyl Phenyl Ether	ND	20
Hexachlorobenzene(total)	ND	20
Pentachlorophenol	ND ND	40
Phenanthrene	ND ND	20
Anthracene	ND	20
Di-n-Butyl Phthalate	ND	20
Fluoranthene	ND ND	20
Pyrene	ND ND	20
Butyl Benzyl Phthalate	ND	20
Benzo(a)anthracene	ND ND	20
3,3-Dichlorobenzidine	ND ND	
•		20
Chrysene bis(2-Ethylboxyl) Phthalato	ND ND	20
bis(2-Ethylhexyl) Phthalate		20
Di-N-Octyl Phthalate	ND ND	20
Benzo(b)flouranthene	ND ND	20
Benzo(k)flouranthene	ND ND	20
Benzo(a)pyrene	ND	20
Indeno(1,2,3-C,D)Pyrene	ND	20
Dibenz(a,h)anthracene	ND	20
Benzo(g,h,i)perylene	ND	20
N-Nitrosodiemethylamine	ND	20
Pyridine	ND	20
Aniline	ND	20
Benzidine	ND	20

ND: Not Detected Below (DF x Detection Limit)

Job No: 611024

Certificate of Analysis

Page 10

QC Analysis Date: 11/18/16

QC Lab ID: 611024-178A

Units: ppm

QUALITY CONTROL DATA (MS/MSD)

EPA METHOD: 6010B

ANALYTE	BLANK RESULT	SPIKE CONC.	MS % REC	MSD % REC	% RPD	% RPD ACCEPT LIMITS	% REC ACCEPT LIMITS
Antimony	ND	1.00	10.0	104.0	164.9%	30	70-130
Arsenic	ND	1.00	101.0	102.0	1.0%	30	70-130
Barium	ND	1.00	94.0	96.0	2.1%	30	70-130
Beryllium	ND	1.00	96.0	97.0	1.0%	30	70-130
Cadmium	ND	1.00	98.0	101.0	3.0%	30	70-130
Chromium	ND	1.00	101.0	106.0	4.8%	30	70-130
Cobalt	ND	1.00	97.0	99.0	2.0%	30	70-130
Copper	ND	1.00	102.0	100.0	2.0%	30	70-130
Lead	ND	1.00	98.0	101.0	3.0%	30	70-130
Molybdenum	ND	1.00	100.0	101.0	1.0%	30	70-130
Nickel	ND	1.00	97.9	99.0	1.1%	30	70-130
Selenium	ND	1.00	101.0	103.0	2.0%	30	70-130
Silver	ND	1.00	76.0	78.0	2.6%	30	70-130
Thallium	ND	1.00	94.0	97.0	3.1%	30	70-130
Vanadium	ND	1.00	98.0	101.0	3.0%	30	70-130
Zinc	ND	1.00	105.0	107.0	1.9%	30	70-130

13554 Larwin Circle, Santa Fe Springs, CA 90670

CHAIN OF CUSTODY RECORD

JOB NO.: 400 7731

Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)

RELINQUISHED BY: RECEIVED FOR LABORATORY BY: RECEIVED BY: RELINQUISHED BY: PHONE: SAMPLED BY: SITE ADDRESS: PROJECT NAME PROJECT CONTACT: COMPANY NAME: ADDRESS: 58026-0,5 43524-015 58023-015 5B012-015 5B021-015 75074-016 211-511--215 -2,5 5:1-ンだい 10 シート 511 4 Cerret 1873 4 CASSAT 050 Cour Air 3-3 SAMPLED SAMPLED TYPE * pH/Time 11-5-14 1450 40 DATE CUSTOMER INFORMATION PROJECT INFORMATION でしたら大 025 1221 28 から 1412 1410 1422 つかい 1621 12521 280 177 1432 1211 127 EDF Turn Around Time Email: Red ot symple Xxxc+ Trail ろうけて 520 REMARKS NORM 24 hr 100 P.O. No PRINT NAME Slerve ナインショー Preserved CONT 8015M TPH G or GRO 8015M TPH D or DRO C5 C CARBON CHAIN している VOCs (8260 B) FULL **OXYGENATES (8260 B) SHORT** COD / TSS / BOD / TDS pH, Conductivity, Turbidity Sulfide, Cyanide, O&G Page: **CAM 17 Metals** X X 601073 11/7/11 11/7/10 DATE 1600 1600 TIME

NOTE: Samples are discarded 30 days after results are reported unless other arrangements are made

*Type: so-Soil GW-Ground Water WW-Waste Water AQ-Aqueous A-Air OT-Other

Distribution: WHITE with report / YELLOW to CHEMTEK / PINK to courie

13554 Larwin Circle, Santa Fe Springs, CA 90670

CHAIN OF CUSTODY RECORD

JOB NO.: 4007736

Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (FLAP No. 2629)

AME CUSTOMER INFORMATION MIACE PROJECT INFORMATION FRANCISCO INF	RECEIVE	RELINQUI	RECEIVED BY:	RELINQU		16		14	13		=	To A	9 5303	co	7	· 5B	C/s	4	3 573	Ю	- 53	s	SAMPLED BY:	SITE ADDRESS:	PROJECT NAME		PHONE:	ADDRESS:	PROJEC	COMPA		
The part of the pa	FOR LABORATO	SHED BY:	BY:		S	-115	2,0-240	-2.5	-11.5	5.0-040	-2.5		73	52.	71.5	028.05	-2.5	2.11	027-05	-2.5	026-1.5	AMPLE ID	BY:	RESS:	NAME			S:	CONTACT:	NY NAME:		
RETURNATION COMPANION PRINT NAME PRIN					GNATURE	-														_	17-6-16			3		PF		2	1		CU	Called Inc
The track of the state of the s	4		(1		035	10%0	ういて	1244	240	305	1363	1255	1402	1401	1400	1417	1416	Sin			TIME SAMPLED T	П		0	OJECT IN		3			STOMER II	10.140
The track of the state of the s				1		_																Name and Address of the Owner, where				FORMATI	FA		En		NFORMAT	0 1
PRINTINALE BOILSM TPH D or GRO BOILSM TPH D or DRO CARBON CHAIN VOCs (8260 B) FULL OXYGENATES (8260 B) SHORT COD / TSS / BOD / TDS pH, Conductivity, Turbidity Sulfide, Cyanide, O&G CAM 17 Metals X X X X X X X X X X X X X X X X X X X				A										,					36	and	XXXCO	ime	Around Time			ON	X		nail:		ION	rup (crar
ROTS ANALYSIS REQUIRED ANALYSIS	Murt.			G		_						_		_				,	Store	20			NORM		P.O.							NO. 2027)
BO15M TPH G or GRO BO15M TPH D or DRO CARBON CHAIN VOCs (8260 B) FULL OXYGENATES (8260 B) SHORT COD / TSS / BOD / TDS pH, Conductivity, Turbidity Sulfide, Cyanide, O&G CAM 17 Metals ANALYSIS REQUIRED POGE: ANALYSIS REQUIRED ANALY	بر	14.		Gen	PRINT NAME														٨	20%	1	Prese	2.4		No.							
B015M TPH G or GRO B015M TPH D or DRO CARBON CHAIN VOCs (8260 B) FULL OXYGENATES (8260 B) SHORT COD / TSS / BOD / TDS pH, Conductivity, Turbidity Sulfide, Cyanide, O&G CAM 17 Metals ANALYSIS REQUIRED ANALYSIS REQUIRED ANALYSIS REQUIRED ANALYSIS RECUIRED ANALYSIS REC				++		-														_,	_		Other									
CARBON CHAIN VOCs (8260 B) FULL OXYGENATES (8260 B) SHORT COD / TSS / BOD / TDS pH, Conductivity, Turbidity Sulfide, Cyanide, O&G CAM 17 Metals ANALYSIS REQUIRED ANALYSIS REQUI																							5M	TPH	G	or	GRO)		+		
VOCs (8260 B) FULL OXYGENATES (8260 B) SHORT COD / TSS / BOD / TDS pH, Conductivity, Turbidity Sulfide, Cyanide, O&G CAM 17 Metals X X X X X X X X X X X X X X X X X X X																						801	5M	TPH	D	or I	DRC					
COD / TSS / BOD / TDS pH, Conductivity, Turbidity Sulfide, Cyanide, O&G CAM 17 Metals X X X X X CPS GOIOTS PAGE ANALYSIS REQUIRED ANALYSIS	2			3													2									_						
COD / TSS / BOD / TDS pH, Conductivity, Turbidity Sulfide, Cyanide, 0&G CAM 17 Metals X X X X CPS GOIOTS PAGE ANALYSIS REQUIRED ANALYSIS RE	المامع			C	C																_					d to the		D) C		DT		
Sulfide, Cyanide, O&G CAM 17 Metals X X X X OCPS SOBI X X X X Pb + As 601013					OMPAN				-														-	-		_		_				
Sulfide, Cyanide, O&G CAM 17 Metals X X X X OCPS SOBI X X X X Pb + As 601013					Y NAME																								dity		NALYSI	
The x x x x x x x x x x x x x x x x x x x																						Sulf	ide	, Cy	/an	ide	, 0	&G			SREQUI	P
5																						CA	M 1	7 M	etc	ıls					Ĩ	uge:
5 JAN X X X X X X X X X X X X X X X X X X X							X			Κ.			×									0	CF	25								1
	11/5/11			1/7/16	DATE		X			X			_			Χ.			_			(0	+).	te	> (000	701	3		
	1600				MIT																											

CHAIN OF CUSTODY RECORD

4007736

611024

13554 Larwin Circle, Santa Fe Springs, CA 90670

Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)

11 58067-0,5 RELINQUISHED BY: RELINQUISHED BY: PHONE: RECEIVED BY: SAMPLED BY: RECEIVED FOR LABORATORY BY: SITE ADDRESS: PROJECT NAME ADDRESS COMPANY NAME PROJECT CONTACT 530 52055-015 53050-015 光のイタース、ち 18056-015 SAMPLE ID -2,5 1115 2.015 115 -2,5 -115 115 SIGNATURE 11-6-1 SAMPLED DATE CUSTOMER INFORMATION PROJECT INFORMATION K SAMPLED TYPE * 200 Inc 1151 O 1105 100 1015 1125 1153 1055 040 000 コレン 1152 1050 Snol TIME EDF Turn Around Time FAX: Email GY 大きないと taron REMARKS NORM ろいすりい P.O. No. 24 hr PRINT NAME Sleer Preserved はるチャ CONT 8015M TPH G or GRO 8015M TPH D or DRO CARBON CHAIN Church VOCs (8260 B) FULL COMPANY NAME **OXYGENATES (8260 B) SHORT** COD / TSS / BOD / TDS pH, Conductivity, Turbidity Sulfide, Cyanide, O&G Page: **CAM 17 Metals** X X X X 11/7/11 1 DATE (600 600 TIME

*Type: so-Sall GW-Ground Water WW-Waste Water AQ-Aqueous A-Air OT-Other NOTE: Samples are discarded 30 days after results are reported unless other arrangements are made

Distribution: WHITE with report / YELLOW to CHEMTEK / PINK to courie

13554 Larwin Circle, Santa Fe Springs, CA 90670

Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)

CHAIN OF CUSTODY RECORD

トジニ

Job No.:	
4007736	61001

CA Dept of Health Accre	CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)	ab (ELAP No. 2629)	Page: (of ()
	CUSTOMER INFORMATION	ON	ANALYSIS REQUIRED	
COMPANY NAME:	3			
PROJECT CONTACT:	Email:	sil:	dity	
ADDRESS:	7		B): DS prbid	
PHONE:	FAX:		ULL 260	
	PROJECT INFORMATION	N	or I	
PROJECT NAME	,	P.O. No.	CHA 50 B TES / B	V-1
SITE ADDRESS:	22	-	TPH 826 NA TSS ndu	
SAMPLED BY:	EDF Turn A	Turn Around Time NORM 24 hr 48 hr Other	BOOCS (GEO) / Cook	
			CAR CAR COXY	
SAMPLE ID S	SAMPLED SAMPLED TYPE - pH/Time	ne REMARKS Preserved CONT	8 C V C C C P S	_
5.00- H92856 1	116-16 1008 20 0	xtract surple	× <	
2 -1.5		7		
3 -2.5	(015	ŝ		
1 513065-0,5	1000		x <	
5 -1.5	1005			
0 -2,5	1010			
3,0-29051	940		×	
5.1-	Sus			
9 -2,5	450			
10 500-005	870		× ×	
71.5	5.68			
12 -215	840			
13 63068-015	500			
-1.5	810			
·	8.5			
16 43069-05	1750		X X	
SIG	SIGNATURE	PRINT NAME (COMPANY NAME D.	DATE TIME
RELINQUISHED BY:	7	Acon Garact	050	1/7/16 1600
RECEIVED BY:				
RELINQUISHED BY:				
RECEIVED FOR LABORATORY BY:	YBY: Ma	Murtil	Champi	In HOW

Distribution: WHITE with report / YELLOW to CHEMTEK / PINK to courier

13554 Larwin Circle, Santa Fe Springs, CA 90670

CHAIN OF CUSTODY RECORD

Job No: 4007736

Page: 5 of 17

Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)

RECEIVED FOR LABORATORY BY: HT	RELINQUISHED BY:	RECEIVED BY:	RELINQUISHED BY:			5025-	A	,	12 43074-01	-2,5	- 1.5	63073-01	8 - 2,5	7 -1.5	6 58072-015	-2.5	- 17.5	3 58071-015	2 -2,5	1 53005-15	SAMPLE ID	יייייייייייייייייייייייייייייייייייייי	SITE ADDRESS:	PROJECT NAME		PHONE:	ADDRESS:	PROJECT CONTACT:	COMPANY NAME:		
RATORY BY: 127				SIGNATURE	1.5	5,5	7 2.5	2.			s don	5 400							-	5 11-5-16 75-8	SAMPLED SA	DATE 1	han		PRO		che			CUST	
					852 1	co	754	752	748	30h	or	0	1009	100	1103	1055	1057	S20	800	56 83	D TYPE *	TIME L EDF			PROJECT INFORMATION			6		CUSTOMER INFORMATION	187
7			Acron							,							Y	5	Rad cu	たべれての	pH/Time RI	Turn Around Time			ATION	FAX:		Email:		MATION	The state of the s
シャナー			in Cry	PRINT NAME	_												_	Α.	0	for	REMARKS Pres	NORM 24 hr 48 hr		P.O. No.	STREET,						
			1+17	m															_	-	Preserved CONT	Other									
																							A TPI						-		
Churt			65c			4																	ON (_						
T			,	COM																			ENA				B) S	НО	RT		
				COMPANY NAME																			/ TSS							ANAL	
				ME														_					e, C		_	100	_	dity	+	ANALYSIS REQUIRED	
				THE REPORT																	C	AM	17 N	\etc	ıls					IRED	age.
=			_			X			X			X			X			X			0	C	3		8	25	1				,
17/11			21/2/11	DATE		X			/ \			^									X	5	7		4<	> (0	10 (5		9
1100			1600	TIME																											ーナ

NOTE: Samples are discarded 30 days after results are reported unless other arrangements are made.

*Type: so-Sail GW-Ground Water WW-Waste Water AQ-Aqueous A-Air OT-Other

Distribution: WHITE with report / YELLOW to CHEMTEK / PINK to courier

13554 Larwin Circle, Santa Fe Springs, CA 90670

Tel. (562) 926-9848 FAX (562) 926-8324

CHAIN OF CUSTODY RECORD

Email: ChemtekLabs@hotmail.com

254200h

RECEIVED FOR LABORATORY BY: RELINQUISHED BY: RECEIVED BY: RELINQUISHED BY: SAMPLED BY: PHONE: SITE ADDRESS: PROJECT NAME COMPANY NAME: CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629) ADDRESS PROJECT CONTACT 53081-0,5 20080-015 53076-0,5 55075-25 513079-05 53077-05 パパ -2,5 -2,5 -1.5 12.5 シニー 115 SIGNATURE SAMPLED DATE X CUSTOMER INFORMATION PROJECT INFORMATION 1102 1100 1252 1251 920 112 253 SAMPLED TYPE * 1232 512 1046 050 1050 1230 8 PO P 1231 TIME 8 EDF pH/Time Turn Around Time FAX: Email 5- Caper +46.6° REMARKS ろうナント NORM P.O. No 24 hr PRINT NAME ハアなん Preserved Lucet CONT 8015M TPH G or GRO 8015M TPH D or DRO X CARBON CHAIN Churt! VOCs (8260 B) FULL COMPANY NAME **OXYGENATES (8260 B) SHORT** COD / TSS / BOD / TDS pH, Conductivity, Turbidity Sulfide, Cyanide, O&G Page: **CAM 17 Metals** X X 117/16 1 ~ X (600 600 TIME

Distribution: WHITE with report / YELLOW to CHEMTEK / PINK to courie

13554 Larwin Circle, Santa Fe Springs, CA 90670

Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)

CHAIN OF CUSTODY RECORD

JOB NO.: 4007736

16 53387-05 5 RELINQUISHED BY: RECEIVED BY: RELINQUISHED BY: PHONE: RECEIVED FOR LABORATORY BY: SAMPLED BY: SITE ADDRESS: PROJECT NAME ADDRESS: PROJECT CONTACT COMPANY NAME: 53086 015 510-580-51 5x08.2-0.5 43082-05 25-18081-02 SAMPLE ID -2,5 -25 -2.5 2:1 2:5 511-211-2,5 11-5-19 SAMPLED SAMPLED TYPE * pH/Time 11-6-16 1000 DATE **CUSTOMER INFORMATION** N PROJECT INFORMATION 523 840 322 437 Jula 200 503 Cus 02 25.4 Sup 1042 8 TIME EDF Turn Around Time Email: FAX: tro xxxex ろいれて NORM いいりん としょうい P.O. No PRINT NAME 52014 CONT 8015M TPH G or GRO 8015M TPH D or DRO CSC **CARBON CHAIN** CTITE VOCs (8260 B) FULL COMPANY NAME **OXYGENATES (8260 B) SHORT** COD / TSS / BOD / TDS pH, Conductivity, Turbidity Sulfide, Cyanide, O&G Page: **CAM 17 Metals** X * X X X 11/7/11 X 21/2/10 DATE 1600 1000 TIME

NOTE: Samples are discarded 30 days after results are reported unless other arrangements are made

*Type: so-Soil GW-Ground Water WW-Waste Water AQ-Aqueous A-Air OT-Other

Distribution: WHITE with report / YELLOW to CHEMTEK / PINK to courie

13554 Larwin Circle, Santa Fe Springs, CA 90670

CHAIN OF CUSTODY RECORD

JOB NO.: 4007736

Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)

RECEIVED FOR LABORATORY BY:	RELINQUISHED BY:	RECEIVED BY:	RELINQUISHED BY:	SIC	16 -1,5	15 53092-015	14 - 7.5	-1,5	12 48091-015	-2.5	71.5	9 45090,05	12:5	2:1-	12082-015	5 -25	4 -115	3 5B088-015	27.7	1 53087-15	SAMPLE ID	SAMPLED BY:	SITE ADDRESS:	PROJECT NAME		PHONE:	ADDRESS:	PROJECT CONTACT:	COMPANY NAME:		
RY BY: MA			Storm	SIGNATURE	70	708	1008	1000	1,000	833	150	028	852	850	948	1007	906	50%	807	11-5-10 805 50	D SAMPLED TYPE *	DATE TIME EDF Turn	200	1 . 6	PROJECT INFORMATION	77	9	1 Curk		CUSTOMER INFORMATION	
Mortal			two Crott	PRINT NAME														_		i pay yourse toward	S Preserved CONT	Turn Around Time NORM 24 hr 48 hr Other		P.O. No.		FAX:		email:		TION	
Chart II			050	COMPANY NAME		* X			<u></u> У Х			X			× ×			X X			80 CA VC O> CC pH Sul	ARBO OCs (YG	(82c)	CHATES	or AIN 3) F 5 (8 5 OE ivity	ULL 260) / T	B) S	dity		ANALYSIS REQUIRED	- uge:
160			11/1/16 160x	DATE II	_	_			^												7	6	4	- A	75	(01	3_		
C			8	TIME																											J

Distribution: WHITE with report / YELLOW to CHEMTEK / PINK to courier

CHAIN OF CUSTODY RECORD

13554 Larwin Circle, Santa Fe Springs, CA 90670

Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com

CA Dept of Health Accredited, (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)

Job No.: 40077360

Page: 9 of 12

		OHIOTO ME	D IMPO			<u> </u>		nt municipal			****			en e		ige.			Oi	1 -	
		CUSTOME	KINFO	RMATION									AN	ALYSIS	REQUIR	RED			-		
COMPANY NAME:											l 1	JRT									
PROJECT CONTACT:			0					-				SHORT			pH, Conductivity, Turbidity				50109		
ADDRESS:		20	~									B) S			Ď.	Q		8081	9		
CITY, STATE, ZIP				leav.				4		B					5	O&G		2	S		
PHONE: EMAIL:				FAX:				-			글	(8260			₹			3			
LWAIL.		PROJECT	TINFOR	MATION				10		(8021	VOCs (8260 B) FULL				.≥	Sulfide, Cyanide,	CAM 17 Metals				
PROJECT NAME								1 4	<u></u>		99	E	=	10	O	Ž	Ve.		A		
SITE ADDRESS:		70-						1	<u>a</u>	ITB	82	Ž	2	TSS	pu	O	7	0	4		
SAMPLED BY:		-	EDF	TAT VINORM	24 h	r 48 hr Othe	,	Z	Z	3	S	G	7 +	0	ပိ	Q	5	0			5. 7
	DATE	TIME					NO. O	8015M TPH	8015M TPH	STEX/MTBE	ŏ	OXYGENATES	RPH (418.1)	COD / TSS	I,	=======================================	X	OCPS	7		
SAMPLE ID	SAMPLED	SAMPLED	TYPE *	A ARTON	REMAR	KS	CONT	ω	ω	80	>	0	=	0	Ω	S	0		-	1	
58092-215	11-5-16	712	40	yeare et	fre	0-	1														
53093-015	1	750	1	ced o	340	of sple	1											X	1		
		754		Glee	اء																*
-2.5		757																			
																		X	1		
	092-215 11516 712 43 093-015 750 -115 754 -215 757 3094-015 913 -15 913 -215 915 5095-015 951																				
	SAMPLEID SAMPLED SAMPLED TYPE* 30972-215 1156 712 40 30973-015 750 750 -1,5 757 58094-015 913 -1,5 915 8095-015 951 -1,5 955																				
		-																4	V		
-1,5						1															
-2.5																					
53096-015		1205																X	V		
-1,5		1206																			
-1,5		1208																			
53097-015 -115 -215		438																×	X		
-1,5		940																			
-2,5		942	_																		
	SIGNATUR		ALC: N			PRINT NAME						CON	IPANY	NAME				D/	ATE	TIA	ΛE
RELINQUISHED BY:	1	Jour	ut	Ac	50	- Garnet	+		C	50)							111-	7/16	المح	0
RECEIVED BY:			950																		
RELINQUISHED BY:																					
RECEIVED FOR LABORAT	TORY BY:	un			Myr	thh				(him	6						11/7	lit	160	0

CHAIN OF CUSTODY RECORD

13554 Larwin Circle, Santa Fe Springs, CA 90670

Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)

ob No.: 400 7736

Page: 10 of 17

	CUSTOMI			TO HERON	10 100 52500				ALVer			, ,	_	OI	12				
COMPANY NAME	CUSTOMI	K INFO	RMATION								AN	ALTSIS	REQUI	CED					
COMPANY NAME: PROJECT CONTACT:						-				SHORT							. ^		
	/ 1	-	>			-				H			pH, Conductivity, Turbidity			_	GOIOR		
ADDRESS:	/nh					-				B) S			-Ġ	O&G		8081	9		
CITY, STATE, ZIP PHONE:			FAX:					B	-	00			2	Õ		C	0		
EMAIL:			FAX:			-		=	Ē	(8260			₹		10	3	0		
医 经验 以制度。经过2000年	PROJEC	TINFOR	MATION			O		80,	8	S			.≥	nio	<u>a</u>	-	^		
PROJECT NAME							T	Ш	9	쁜	=	10	2	0	Ve		F		
SITE ADDRESS:	br		JII.			르	교	TB TB	(82	Z	200	TS	DU	O	7	Ch			
SAMPLED BY:			TAT NOR	M24 hr48 hr	Other	1 2	NO.	3	S	5	- -	0	ŭ	de	5	0	t		
	DATE TIME	105010			NO. OF	8015M TPH	8015M TPH D	BTEX/MTBE (8021	VOCs (8260 B) FULL	OXYGENATES	RPH (418.1)	COD / TSS	I,	Sulfide, Cyanide,	CAM 17 Metals		N		
SAMPLE ID	SAMPLED SAMPLED	TYPE *		REMARKS	CONT	∞	00	00	>	0	F	0	Ω	S		~	0		
4B098-015	11-5-16 1152	1											×	4					
-1,5	1 1153	1	Cecl	cap															
-1.5	1155																		
9B099-015						1										X	X		
-115	1034																		
-1.5 -2.5	1036												_						
4310A -015	1113															X	X		
5300 -015	1115		,			-		-								_	1		
-2.5						-							-						
	1119					-		-		-						X	1		
53101-015 -115 -25	1225							-		-						X	4		
-115	122					-		-		-			-					- 6	
-215						-				-			-				1		
53102-0.5	1021					_										X	~		1
-115	1023																		
-115	1025																		
4303-015	1316															X	×		
	SIGNATURE			PRINT NAM	E					CON	APANY	NAME				D	ATE	TI	ME
RELINQUISHED BY:	//		/-	faron Garr	1+		C	SC								11/7	110	160	OC
RECEIVED BY:																,	1		
RELINQUISHED BY:																			
RECEIVED FOR LABORAT	TORY BY: 76			Wast				CI	nenh	,						11/7	116	16	5~

CHAIN OF CUSTODY RECORD

13554 Larwin Circle, Santa Fe Springs, CA 90670

Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)

611024

ob No.: 4007736

																100	9-	,	1	100		
	CU	ISTOMER	INFO	RMATION	1									AN.	ALYSIS	REQUIR	ED					
COMPANY NAME:													ORT		181							
PROJECT CONTACT:	_	0	-	Email:									SHO		<u>}</u>				2			
ADDRESS:	L	700											B)	DS	pH, Conductivity, Turbidity	O&G		_	GOIOB			
PHONE:	-			FAX:					GRO	8015M TPH D or DRO		Ħ	OXYGENATES (8260	COD / TSS / BOD / TDS	2	Õ		8081	S			
	P	ROJECT	INFOR	MATION					ō	o lo	Z	H ((82	0	ξ	ide	S	0				
PROJECT NAME	,		e			P.O. No.			O	۵	苦	0 8	TES	/ B	i C	an	etc	20	\$			
SITE ADDRESS:	L	7							H H	TPH	Z	826	A	TSS	ng	Ó	2	-10	4			
SAMPLED BY:			EDF	Turn Arou	und Time	NORM 24 hr	48 hr Othe	er	8015M TPH	WS	CARBON CHAIN	VOCs (8260 B) FULL	'GE	0	ပိ	Sulfide, Cyanide,	CAM 17 Metals	OCR	490			
	DATE	TIME		10030312111111				NO OF	10	10	A	ŏ	×	Ö	H,	=	A	\approx	2			
		The second second second						CONT		w	Ŭ				-	0,		0	0		-	
			50	6	Kree	+ for		1													_	
	DATE TIME SAMPLED SAMPLED TYPE * PH/Time REMARKS Preserved P SIO3-115 11-5+0 1317 40 recept from -2.5 1318 recept ap of 5104-0.5 1128 -1.5 1128 -1.5 11372																					
3 5B104-0.5	SAMPLED SAMPLED TYPE * pH/Time REMARKS Preserved No 5 11-54 1317 40 excreet for 1318 cecl ap of 125 surple gleen 128 1128 1128 11340 1341															_		X	X		_	
1 -1.5					1				-						-							
				_																		
6 SB105-015																		4	4			
7 -1,5 8 -2,5								_														
		1342																				
9 5B106-015		333																X	X			
10 -1,5		1334										. .										
10 -1,5		1335						1														
12 53107 -015		925																X	X			
13 -1,5		430																				
12 53107 -0.5 13 -1.5 14 -2.5		935																				
1553108-0,5		855																X	Y			
16 -1.5	·	400	1																1			
	GNATURE	\sim				PRIN	TNAME						COM	PANY I	AME		LT III		DA	TE	TIM	ΛE
RELINQUISHED BY:	1	1			Acu	ron	Garre	H		(250	2							11/	116	160	000
RECEIVED BY:					1																	
RELINQUISHED BY:																						
RECEIVED FOR LABORATO	RY BY: 2	in				MVTIA					(hal							11/7/	11	160	, 0

13554 Larwin Circle, Santa Fe Springs, CA 90670

Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com

CHAIN OF CUSTODY RECORD

Job No .:

REC	REL	REC	REL		16	15	4	3	12	=	10	40	8	7	0	(m	4	ω	N	-			6	SITE	PRC		PHO	AD	PRO	CO		CA
RECEIVED FOR LABORATORY BY:	RELINQUISHED BY:	RECEIVED BY:	RELINQUISHED BY:	S				-2.5	71.7	518045-015	-2,5	7.1-	5 BOHY-0,5	ンだっ	5:1-	513638-015	-215	511	513109-015	5B108-2,5	SAMPLE ID		SAMPLED BY:	SITE ADDRESS:	PROJECT NAME		PHONE:	ADDRESS:	PROJECT CONTACT:	COMPANY NAME:		CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)
RY BY:			1	SIGNATURE							_									5-11	SAMPI	DATE										edited
N			1	RE	-			10	70	-	-	-		_	10		α	00	00	1-546 905	ED SA		1	5		PRO		, [>		CUST	. (ELAP
								304	Inac	していて	sen	222	1420	1 C	2 121	120	5	812	806	50	SAMPLED SAMPLED TYPE .	TIME		1		JECT I		20			OMER	No. 14
										-									_	40	TYPE *		n	1	0	NFOR/			6		INFOR	35) & M
																			٠ ر	1	pH/Time	Turn Ar				PROJECT INFORMATION	FAX:	1	Email:		CUSTOMER INFORMATION	obile Lo
																		4/0-20	ace	tract	ē	Turn Around Time				_			7		ž	ib (ELA
3			trio					,										7/6	Cc		REM		ш									P No. 2
MWY			Ĭ	PI													,	7	3	100	REMARKS	N			P.O. No							529)
			0	PRINT NAME														ナイア	ず	١	Pre		1		ř							
			front to	ME																	Preserved		- 1									
			7					~						=						-	CONT											
																						_	W 1	ГРН	G	or	GRO	0		7		
			\sim																		80	15/	M 1	ГРН	D	or l	DRC)				
			2																		C	ARB	0	N C	CHA	AIN						
(mul			6																		V	OC:	(8	826	0 B) F	ULL					
ر				COMP																	0	XYC	GE	NA	TES	(8	260	B) 5	SHO	RT		
				COMPANY NAME																				-		-	/ T				ANA	
				ME																									dity	Ц	ANALYSIS REQUIRED	
																			y					17 I			, 0	&G	_	\dashv	QUIRED	Page:
										K			X			X			X		Ci	AM	17	7 M	eto	ils) _ (0.	_	-		e:
		_	=		_					X			^			<u></u>			1		0)(1	5	1	ع		21	- F	7		P
11/1/11			HIL	DATE	-														X		X	2/0	7	0	14	7		7	10	<u>S</u>		<u></u>
16)	() 1	-/(_		-
1600			600	TIME	-																											1

Distribution: WHITE with report / YELLOW to CHEMTEK / PINK to courier

13554 Larwin Cir., Santa Fe Springs, CA 90670 T 562.926.9848 F 562.926.8324

Job No: 611089

Page 1

Certificate of Analysis

Project No. 4007736 Project Site: NHHS **Report Date:** 01/31/17

> 5231 Colfax Ave LA, CA

Date Received: 11/21/16 Number of Samples: 93 Sample Matrix: Soil

Attention: Aarron Garrett

Client: CSC

This is the Ce	rtificate of Analysis	s for the following samples:
SAMPLE IDENTIFICATION	DATE OF SAMPLE	LABORATORY IDENTIFICATION
SB001-10	11/19/16	611089-01A
SB001-15	11/19/16	611089-02A
SB001-20	11/19/16	611089-03A
SB010-10	11/19/16	611089-04A
SB010-15	11/19/16	611089-05A
SB011-10	11/20/16	611089-06A
SB011-15	11/20/16	611089-07A
SB012-10	11/20/16	611089-08A
SB012-15	11/20/16	611089-09A
SB013-10	11/20/16	611089-10A
SB013-15	11/20/16	611089-11A
SB030-0.5	11/20/16	611089-12A
SB030-0.5 DUP	11/20/16	611089-13A
SB030-1.5	11/20/16	611089-14A
SB030-1.5 DUP	11/20/16	611089-15A
SB030-2.5	11/20/16	611089-16A
SB030-2.5 DUP	11/20/16	611089-17A
SB031-0.5	11/20/16	611089-18A
SB031-1.5	11/20/16	611089-19A
SB031-2.5	11/20/16	611089-20A
SB032-0.5	11/20/16	611089-21A
SB032-1.5	11/20/16	611089-22A
SB032-2.5	11/20/16	611089-23A
SB033-0.5	11/20/16	611089-24A
SB033-1.5	11/20/16	611089-25A
SB033-2.5	11/20/16	611089-26A
SB034-0.5	11/20/16	611089-27A
SB034-1.5	11/20/16	611089-28A
SB034-2.5	11/20/16	611089-29A
SB035-0.5	11/20/16	611089-30A
SB035-1.5	11/20/16	611089-31A
SB035-2.5	11/20/16	611089-32A
SB036-0.5		
	11/20/16	611089-33A
SB036-1.5	11/20/16	611089-34A
SB036-2.5	11/20/16	611089-35A
SB037-0.5	11/20/16	611089-36A
SB037-1.5	11/20/16	611089-37A
SB037-2.5	11/20/16	611089-38A
SB041-0.5	11/20/16	611089-39A
SB041-1.5	11/20/16	611089-40A
SB041-2.5	11/20/16	611089-41A
SB042-0.5	11/19/16	611089-42A
SB042-1.5	11/19/16	611089-43A
SB042-2.5		
	11/19/16	611089-44A 611089-45A
SB043-0.5	11/19/16	0.1.000 1011
SB043-0.5 DUP	11/19/16 11/19/16	611089-46A 611089-47A
SB043-1.5		611089-47A 611089-48A
SB043-1.5 DUP	11/19/16 11/19/16	611089-48A 611089-49A
SB043-2.5		611089-49A 611089-50A
SB043-2.5 DUP	11/19/16	
SB046-0.5	11/19/16	611089-51A
SB046-1.5	11/19/16	611089-52A
SB046-2.5	11/19/16	611089-53A
SB047-0.5	11/19/16	611089-54A

Page 2

Client: CSC

Certificate of Analysis

Project No. 4007736
Project Site: NHHS

5231 Colfax Ave LA, CA Report Date: 01/31/17

Date Received: 11/21/16

Number of Samples: 99

Job No: 611089

Attention: Aarron Garrett Sample Matrix: Soil

This is the Certificate of Analysis for the following samples:

SAMPLE IDENTIFICATION	DATE OF SAMPLE	LABORATORY IDENTIFICATION
SB048-0.5	11/19/16	611089-55A
SB048-1.5	11/19/16	611089-56A
SB048-2.5	11/19/16	611089-57A
SB051-0.5	11/19/16	611089-58A
SB051-1.5	11/19/16	611089-59A
SB051-2.5	11/19/16	611089-60A
SB052-0.5	11/19/16	611089-61A
SB052-1.5	11/19/16	611089-62A
SB052-2.5	11/19/16	611089-63A
SB053-0.5	11/20/16	611089-64A
SB053-0.5 DUP	11/20/16	611089-65A
SB053-1.5	11/20/16	611089-66A
SB053-1.5 DUP	11/20/16	611089-67A
SB053-2.5	11/20/16	611089-68A
SB053-2.5 DUP	11/20/16	611089-69A
SB054-0.5	11/20/16	611089-70A
SB054-1.5	11/20/16	611089-71A
SB054-2.5	11/20/16	611089-72A
SB058-0.5	11/20/16	611089-73A
SB058-1.5	11/20/16	611089-74A
SB058-2.5	11/20/16	611089-75A
SB059-0.5	11/20/16	611089-76A
SB059-1.5	11/20/16	611089-77A
SB059-2.5	11/20/16	611089-78A
SB060-0.5	11/20/16	611089-79A
SB060-1.5	11/20/16	611089-80A 611089-81A
SB060-2.5	11/20/16	
SB061-0.5	11/19/16	611089-82A
SB061-1.5	11/19/16	611089-83A
SB061-2.5	11/19/16	611089-84A
SB063-0.5	11/19/16	611089-85A
SB063-1.5	11/19/16	611089-86A
SB063-2.5	11/19/16	611089-87A
SB070-0.5	11/19/16	611089-88A
SB070-1.5	11/19/16	611089-89A
SB070-0.5	11/19/16	611089-90A
SB070-1.5	11/19/16	611089-91A
SB070-2.5	11/19/16	611089-92A
SB078-0.5	11/19/16	611089-93A
SB078-1.5	11/19/16	611089-94A
SB078-2.5	11/19/16	611089-95A
SB078-2.5 DUP	11/19/16	611089-96A
SB029-0.5	11/20/16	611089-97A
SB029-1.5	11/20/16	611089-98A
SB029-2.5	11/20/16	611089-99A
		*** **

Reviewed and Approved:

Mulen L

Job No: 611089

Page 3

Client: CSC

EPA Method: 8260B

Certificate of Analysis

Project No. 4007736

Project Site: NHHS

5231 Colfax Ave

Report Date: 01/31/17 **Date of Sample:** 11/19-20/16

Sample Matrix: Soil Date Received: 11/21/16 Units: ppb or µg/kg

Client Sample ID: S001-10 S001-1	Client Sample ID:	CD010.10	SB010-15	CD011 10	SB-11-15	CD010 10	SB012-15	SB013-10	CD012 15	Detection
Description										
Bromochoromethane				-	-	-		-		-
Erromochromethane	Benzene		ND		ND					1
Bromordorm		ND	ND	ND	ND	ND	ND	ND	ND	1
Bromomethame										•
Bettylbenzene										•
										1
Institutions	•									1
Carbon Tetrachloride										1
Chloroethane					ND	ND		ND		1
Chlorordoram	Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	1
Chlororoluene										1
2-Chirorotoluene										1
4-Chirorotuleme										1
2-Chibroroethylary winy winter ND										1
Dibromoethare										
1.2-Dibromo-s-chloropropane										
Discrepance		ND	ND	ND	ND	ND	ND	ND	ND	1
1.2-Dichlorobenzene	1,2-Dibromoethane (EDB)									1
1.3-Dichlorodenzene										1
1.1-Dichlorobenzene										1
Dichiorodifilaroramethane										1
1.1-Dichlorosthane	•									1
1_2- Dichloroethene										1
Cis-12-Dichloroethene	•									1
Trans-12-Dichloroethene	1,1-Dichloroethene									1
1.2-Dickhoropropane										1
1.3-Dickhforopropane	,									1
22-Dichloropropane										1
1-10-lichtoropropene	• •									1
Cis-1,-Dichioropropene										1
Ethylbenzene		ND		ND	ND	ND	ND	ND	ND	1
Hexachlorobutadiene		ND	ND	ND	ND	ND	ND	ND	ND	1
Sopropylbenzene										1
A-Isopropyltoluene										1
Methylene Chloride										
Naphthalene										
N-propylbenzene										1
1,1,1,2-Tetrachloroethane	•	ND	ND	ND	ND	ND	ND	ND	ND	1
1,1,2,2-Tetrachloroethane										1
Tetrachloroethene(PCE)										1
Toluene										1
1,2,3-Trichlorobenzene	• •									1
1,2,4-Trichlorobenzene										1
1,1,1-Trichloroethane	t t									
Trichloroethene(TCE) ND 1 Trichlorofluoromethane ND 1 1,2,3-Trichloropropane ND 1 1,2,4-Trimethylbenzene ND 1 1,3,5-Trimethylbenzene ND	t t									1
Trichlorofiluoromethane ND	1,1,2-Trichloroethane									· ·
1,2,3-Trichloropropane										· ·
1,2,4-Trimethylbenzene ND ND ND ND ND ND ND ND ND 1 1,3,5-Trimethylbenzene ND ND <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th>										-
1,3,5-Trimethylbenzene ND 1 Vinyl Chloride ND										
Vinyl Chloride ND 1 Total Xylenes ND 2 Ethanol ND ND <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th></th<>										-
Total Xylenes					ND					1
MTBE ND 1 ETBE ND 1 DIPE ND N	Total Xylenes									
ND ND ND ND ND ND ND ND										
DIPE ND ND ND ND ND ND ND ND ND 1 TAME ND ND ND ND ND ND ND ND 1 TBA ND										
TAME ND 1 TBA ND ND ND ND ND ND ND ND ND 20 MEK ND										
TBA ND										
MEK ND 10 MIBK ND 10 2-Hexanone ND										
MIBK ND 10 2-Hexanone ND ND ND ND ND ND ND ND ND 10 Ethyl Acetate ND 1 Acetone ND 50										
Ethyl Acetate ND ND ND ND ND ND ND ND 1 Acetone ND ND ND ND ND ND ND ND ND S0 Analysis Date: 11/28/16 11/28/16 11/28/16 11/28/16 11/28/16 11/28/16 11/28/16 11/28/16										
Acetone ND ND <t< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
Analysis Date: 11/28/16 11/28/16 11/28/16 11/28/16 11/28/16 11/28/16 11/28/16 11/28/16	_									
	Acetone Analysis Data:									50
			1 1/∠ö/ lb			11/∠8/16	11/20/16	11/∠8/16	11/∠8/16	

13554 Larwin Cir., Santa Fe Springs, CA 90670 T 562.926.9848

F 562.926.8324

Certificate of Analysis

Page 4

Client: CSC
Project Site: NHHS

5231 Colfax Ave

LA, CA

EPA Method: 8015M

units: mg/kg or ppm

Job No: 611089 Report Date: 01/31/17

Date of Sample: 11/19-20/16 Date Received: 11/21/16 Sample Matrix: Soil

		Gas Range			Diesel Range	е		Oil Range			
Sample ID	UNITS	(C4-C12)	DF	DLR	(C13-C22)	DF	DLR	(C23-36)	DF	DLR	
SB001-10	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB001-15	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB010-10	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB010-15	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB011-10	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB011-15	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB012-10	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB012-15	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB013-10	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB013-15	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
Method Blank	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	

Sample Date: Analysis Date:

11/19-20/16 11/28/16 11/19-20/16 11/28/16 11/19-20/16 11/28/16

ND: Not detected at or above DLR

DLR: Detection Limit for Reporting Purposes

EPA Method: 8270C PAH SIM

Client: CSC

Sample Matrix: Soil

Certificate of Analysis

Project No. 4007736

Project Site: NHHS

5231 Colfax Ave

Units: ppb or µg/kg

Page 5 **Job No:** 611089

Report Date: 01/31/17 **Date of Sample:** 11/19-20/16 Date Received: 11/21/16

Client Sample ID:	SB011-10	SB-11-15	SB012-10	SB012-15	SB013-10	SB013-15	Detection
Dilution Factor:	1	1	1	1	1	1	Limit
	(ppb)						
1-Methlynaphthalene	ND	ND	ND	ND	ND	ND	20
2-Methlynaphthalene	ND	ND	ND	ND	ND	ND	20
Acenaphthene	ND	ND	ND	ND	ND	ND	20
Acenaphthylene	ND	ND	ND	ND	ND	ND	20
Anthracene	ND	ND	ND	ND	ND	ND	20
Benzo(a)anthracene	ND	ND	ND	ND	ND	ND	20
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	20
Benzo(b)fluoranthene	ND	ND	ND	ND	ND	ND	20
Benzo(g,h,i)perylene	ND	ND	ND	ND	ND	ND	20
Benzo(k)fluoranthene	ND	ND	ND	ND	ND	ND	20
Chrysene	ND	ND	ND	ND	ND	ND	20
Dibenz(a,h)anthracene	ND	ND	ND	ND	ND	ND	20
Fluoranthene	ND	ND	ND	ND	ND	ND	20
Fluorene	ND	ND	ND	ND	ND	ND	20
Indeno(1,2,3-C,D)Pyrene	ND	ND	ND	ND	ND	ND	20
Naphthalene	ND	ND	ND	ND	ND	ND	20
Phenanthrene Phenanthrene	ND	ND	ND	ND	ND	ND	20
Pyrene	ND	ND	ND	ND	ND	ND	20

Analysis Date: 12/26/16 12/26/16 12/26/16 12/26/16 12/26/16 12/26/16 **DF: Dilution Factor**

3554 Larwin Cir., Santa F∈ Springs, CA 90670 T 562.926.9848 F 562.926.8324

Certificate of Analysis

Page 6

Client: CSC
Project Site: NHHS

5231 Colfax Ave

LA, CA

Job No: 611089
Report Date: 01/31/17
Date of Sample: 11/19-20/16
Date Received: 11/21/16

Sample Matrix: Soil

EPA Method: 6010B Metals **Units:** ppm or mg/Kg

		Client Sample ID:	Arsenic	Lead	Analysis Date
	DF		1	1	
Analyte		Detection Limit	2.00	2.00	
SB030-0.5	1	ppm	ND	3.59	12/2/2016
SB031-0.5	1	ppm	ND	ND	12/2/2016
SB032-0.5	1	ppm	ND	ND	12/2/2016
SB033-0.5	1	ppm	ND	ND	12/2/2016
SB034-0.5	1	ppm	ND	19.6	12/2/2016
SB035-0.5	1	ppm	ND	9.07	12/2/2016
SB036-0.5	1	ppm	ND	26.4	12/2/2016
SB037-0.5	1	ppm	ND	18.6	12/2/2016
SB041-0.5	1	ppm	32.2	64.7	12/2/2016
SB042-0.5	1	ppm	ND	2.86	12/2/2016
SB043-0.5	1	ppm	ND	168	12/2/2016
SB046-0.5	1	ppm	ND	11.7	12/2/2016
SB047-0.5	1	ppm	ND	19.8	12/2/2016
SB048-0.5	1	ppm	ND	62.2	12/2/2016
SB051-0.5	1	ppm	ND	96.7	12/2/2016
SB052-0.5	1	ppm	ND	ND	12/2/2016
SB053-0.5	1	ppm	ND	2.70	12/2/2016
SB054-0.5	1	ppm	ND	ND	12/2/2016
SB058-0.5	1	ppm	ND	ND	12/2/2016
SB059-0.5	1	ppm	ND	ND	12/2/2016
SB060-0.5	1	ppm	ND	8.32	12/2/2016
SB061-0.5	1	ppm	15.7	12.9	12/2/2016
SB063-0.5	1	ppm	8.58	30.5	12/2/2016
SB070-0.5	1	ppm	ND	11.6	12/2/2016
SB029-0.5	1	ppm	ND	29.7	12/2/2016
SB078-0.5	1	ppm	ND	7.59	12/2/2016
SB041-1.5	1	ppm	25.9	3.70	12/13/2016
SB043-1.5	1	ppm	ND	12.6	12/13/2016
SB051-1.5	1	ppm	ND	25.9	12/13/2016
SB061-1.5	1	ppm	ND	ND	12/13/2016
SB030-0.5 dup	1	ppm	ND	3.33	1/20/2017
SB041-2.5	1	ppm	ND	ND	1/20/2017
SB043-0.5	1	ppm	ND	12.4	1/20/2017
SB053-0.5	1	ppm	ND	ND	1/20/2017
SB078-0.5	1	ppm	4.97	10.3	1/31/2017
SB109-1.5	1	ppm	3.40	132	1/31/2017
SB041-1.5	1	ppm	25.90	3.70	1/20/2017
SB041-2.5	1	ppm	ND	ND	12/13/2016

ND: Not Detected Below (DF x Detection Limit)

Certificate of Analysis

Page 7

Client: CSC Project Site: NHHS

5231 Colfax Ave

LA, CA

Job No: 611089 **Report Date: 01/31/17 Date of Sample:** 11/19-20/16

Date Received: 11/21/16 Sample Matrix: Soil

EPA Method: 6010B Metals Units: ppm or mg/Kg

	Client Sample ID:	SB011-10	SB011-15	SB012-10	SB012-15	SB013-10	SB013-15	Reporting
	Dilution Factor:	1	1	1	1	1	1	Limit
Analyte		mg/kg						
Antimony		ND	ND	ND	ND	ND	ND	2.00
Arsenic		ND	ND	ND	ND	ND	ND	2.00
Barium		140	101	128	167	60.1	97.9	1.00
Beryllium		ND	ND	ND	ND	ND	ND	1.00
Cadmium		ND	ND	ND	ND	ND	ND	1.00
Chromium		17.7	16.7	16.3	25.4	8.50	9.44	1.00
Cobalt		10.5	9.08	9.57	12.4	4.25	2.78	2.00
Copper		22.3	17.8	17.5	23.9	8.97	38.9	2.00
Lead		ND	ND	ND	ND	ND	ND	2.00
Molybdenum		ND	ND	ND	ND	ND	ND	2.00
Nickel		13.7	12.1	12.8	17.8	5.29	5.64	2.00
Selenium		ND	ND	ND	ND	ND	ND	2.00
Silver		ND	ND	ND	ND	ND	ND	1.00
Thallium		ND	ND	ND	ND	ND	ND	2.00
Vanadium		41.1	38.1	38.5	48.9	30.2	25.1	2.00
Zinc		47.7	40.8	42.4	55.5	19.2	54.8	5.00
	Analysis Date:	12/5/16	12/5/16	12/5/16	12/5/16	12/5/16	12/5/16	_

Analysis Date: 12/5/16

EPA Method: 7470A Mercury Units: ppm or mg/Kg

	Client Sample ID:	SB011-10	SB011-15	SB012-10	SB012-15	SB013-10	SB013-15	Reporting
	Dilution Factor:	1	1	1	1	1	1	Limit
Analyte		mg/kg						
Mercury		ND	ND	ND	ND	ND	ND	0.05

Analysis Date: 12/5/16 12/5/16 12/5/16 12/5/16 12/5/16 12/5/16

ND: Not Detected Below (DF x Detection Limit)

Job No: 611089

Certificate of Analysis

Page 8

QC Analysis Date: 12/05/16

QC Lab ID: 611126-1A Units: ppm

QUALITY CONTROL DATA (MS/MSD)

EPA METHOD: 6010B

ANALYTE	BLANK RESULT	SPIKE CONC.	MS % REC	MSD % REC	% RPD	% RPD ACCEPT LIMITS	% REC ACCEPT LIMITS
Antimony	ND	1.00	106.0	102.0	3.8%	30	70-130
Arsenic	ND	1.00	97.0	99.0	2.0%	30	70-130
Barium	ND	1.00	103.0	99.0	4.0%	30	70-130
Beryllium	ND	1.00	95.0	89.0	6.5%	30	70-130
Cadmium	ND	1.00	105.0	98.0	6.9%	30	70-130
Chromium	ND	1.00	113.0	101.0	11.2%	30	70-130
Cobalt	ND	1.00	103.0	103.0	0.0%	30	70-130
Copper	ND	1.00	103.0	100.0	3.0%	30	70-130
Lead	ND	1.00	104.0	98.0	5.9%	30	70-130
Molybdenum	ND	1.00	103.0	102.0	1.0%	30	70-130
Nickel	ND	1.00	104.0	102.0	1.9%	30	70-130
Selenium	ND	1.00	104.0	101.0	2.9%	30	70-130
Silver	ND	1.00	96.0	94.0	2.1%	30	70-130
Thallium	ND	1.00	99.0	99.0	0.0%	30	70-130
Vanadium	ND	1.00	104.0	103.0	1.0%	30	70-130
Zinc	ND	1.00	102.0	99.0	3.0%	30	70-130

Job No: 611089

Certificate of Analysis

Page 9

QC Analysis Date: 11/28/16

QC Lab ID: 611105-10A

Units: ppb

QUALITY CONTROL DATA

EPA METHOD: 8260B(VOC's)

ANALYTE	BLANK RESULT	SPIKE CONC.	MS % REC	MSD % REC	% RPD	% RPD ACCEPT LIMITS	% REC ACCEPT LIMITS
1,1-Dichloroethene	ND	25	103.4	108.3	4.6%	30	70-130
Benzene	ND	25	87.7	88.1	0.5%	30	70-130
Trichloroethylene	ND	25	97.1	94.2	3.0%	30	70-130
Toluene	ND	25	97.0	94.0	3.1%	30	70-130
Chlorobenzene	ND	25	97.7	93.6	4.3%	30	70-130

QC Analysis Date: 11/28/16

QC Lab ID: 611105-10A

Units: ppm

QUALITY CONTROL DATA

EPA METHOD: 8260B (TPH Gas Range Organics)

			MS	MSD		ACCEPT	ACCEPT
ANALYTE	BLANK RESULT	SPIKE CONC.	% REC	% REC	% RPD	LIMITS	LIMITS
GRO (TPH)	ND	0.5	92.3	91.6	0.8%	30	70-130

CHAIN OF CUSTODY RECORD

61100

13554 Larwin Circle, Santa Fe Springs, CA 90670

Job No.:

40077360

Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)

CA Dept of Redlin Accredited. (ELAP No. 1435) & Mobile L	LOD (ELAP NO. 2829)								Po	ige:	-)		of	4	>
CUSTOMER INFORMATION	ON		Tily				AN	ALYSIS	REQUIR	ED			THE		
COMPANY NAME: C5C						RT									
PROJECT CONTACT: A Contract Emo	ail:					SHORT		€ E				M	B27091M	ſ	
ADDRESS:		0				B)	DS	io	O&G			0	2	N	
PHONE: FAX	(:	GRO	280		Ħ	260	1	5	Õ		0	60 10 PS	0	8082	
PROJECT INFORMATIO	ON	6	٥ ا	Z	H	(8)	O	₹	de	S	3		7	9	
PROJECT NAME NILLS	P.O. No.	O	8015M TPH D or DRO	CARBON CHAIN	VOCs (8260 B) FULL	OXYGENATES (8260	COD / TSS / BOD / TDS	i c	/an	CAM 17 Metals	8081	As	30		
SITE ADDRESS: 5231 Colfax Ax L	-A	₽	교	Z	826	NA	TSS	Pd	Ó	7	5		2	2	
SAMPLED BY: EDF Turn A	Around Time NORM 24 hr 48 hr Other	5M	5M	RBC	S	YGE	0	ပိ	de	5	0	1	I	[2]	
DATE TIME SAMPLE ID SAMPLED SAMPLED TYPE * pH/Tir	NO OF	8015M TPH	801	CAI	0	ŏ	CO	pH, Conductivity, Turbidity	Sulfide, Cyanide,	CA	OCPS	PS +	PAHS	PCBs	
	tract from real con			X		1								X	
2 -15 1334	want the wax can			+										X	
3 -20 1340		-													
4 58010-10 954	4575			X	X										
5 - 25 959	7			+	X										
6 53011-10 11-20-16 1310				X	X					X			X		
7 -15 1 1315				+	×					4			1		
8 SB012-10 1330				X	×					X			X		
9 - 15 (335)				*	K					×			X		
98013-10 1359		1		X	V					X			X		
-15 1409				+	×					*			L		
2 58030-0.5 828	2										X	X			
4 201 - 2.5 830												-			
4 210/-2,5 830															
5 413031-05 840											X	X		X	
-1.5 841)	\														
SIGNATURE	PRINT NAME					COM	PANY N	IAME			ill lite	DA	TE	TIM	IE.
RELINQUISHED BY:	Aeron Garrett			CC	SC							11-5	1-16	90	0
RECEIVED BY:															
RELINQUISHED BY:															
RECEIVED FOR LABORATORY BY:	Mortinely			chen	to							11-21-	-16	74	n

13554 Larwin Circle, Santa Fe Springs, CA 90670

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629) Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com

CHAIN OF CUSTODY RECORD

911089

Job No.: 4007734

11 55025-015 PHONE: RELINQUISHED BY: RELINQUISHED BY: SAMPLED BY: SITE ADDRESS: PROJECT NAME RECEIVED FOR LABORATORY BY: RECEIVED BY: ADDRESS PROJECT CONTACT: COMPANY NAME: 5.0-016-015 53034-0,5 58032-0,5 513031-2,5 510-250219 SAMPLE ID 211 -2,5 5-1 -2.5 2.5 1115 511 乙千千 SIGNATURE そんろんま 11-2016 842 SAMPLED SAMPLED TYPE * pH/Time DATE **CUSTOMER INFORMATION** PROJECT INFORMATION 322 00 8000 526 900 558 1012 00 00 1000 4.25 ma 527 100 TIME 90 Turn Around Time Email tract. 44100 Rel REMARKS Muy NORM 24 hr P.O. No S 63 Preserved Trond + CONT 8015M TPH G or GRO 8015M TPH D or DRO CARBON CHAIN Chenter VOCs (8260 B) FULL **OXYGENATES (8260 B) SHORT** COD / TSS / BOD / TDS pH, Conductivity, Turbidity Sulfide, Cyanide, O&G Page: CAM 17 Metals 1 4 OCPS 8081 × * X 1 1 M-ZHC 1 +P6 60013 11-1-16 9 200 900

NOTE: Samples are discarded 30 days after results are reported unless other arrangements are made

*Type: so-Sail GW-Ground Water WW-Waste Water AQ-Aqueous A-Air OT-Other

13554 Larwin Circle, Santa Fe Springs, CA 90670

Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)

CHAIN OF CUSTODY RECORD

N XV 11)

Job No.:	
ricons	61100

RECEIVED FOR LABORATORY BY: 2	RELINQUISHED BY:	RECEIVED BY:	RELINQUISHED BY:	SIGNATURE	128021-02	15 -2,5		13 50046-05	12 + 1 - 2,5	211-00	10 53025-015	9 -2.5	211-	15BO42-05 11-19	6 -2:5	5 -1.5	4 5BOUL-015	3 -2.5	2 -1:5	1 45057-0.5. 4 11-2016	S	SAMPLED BY:	SITE ADDRESS: 5231 Colfux	PROJECT NAME NHH	PROJEC	PHONE	ADDRESS:	PROJECT CONTACT: A G-CST 2+4	COMPANY NAME: CSC	CUSTOM	CA Depi of rediin Accredited. (trar No. 1435) & Mobile Lab (trar No. 2627)
					1116	=0	1105	1100	1057	1501	1000	640	1035	11-19-161020	1.01	10001	1000	947	222	Jus .	ED TYPE • pH/Time		AU CA		PROJECT INFORMATION	FAX:		Em		CUSTOMER INFORMATION	1435) & MODILE
muts L		,	Aus Garrett	PRINT NAME						2	24								_	actual are stalled	REMA	Turn Around Time NORM 24 hr 48 hr Other	+	P.O. No.	ON	X:		Email:		ION	LOD (ELAF NO. 2627)
			J-																		80	15 <i>N</i>									
Church			050	CC																	VC	ARBO OCs XYG	(82	60 E	3) F	ULL		SHC	ORT		
			, ,	COMPANY NAME																	C(DD /	TSS	/ B	OI) / 1 y, Ti	rDS urbi	dity		ANALYSIS REQUIR	
					*			X			X			X			×			X	C	AM 1				ج, o	8.6			UIRED	Page:
11-21-16			11-21-10	DATE	X		,	<		,	<			X			×			^	P	6	35	Ac	3	60	3:	2	,		√ of
910			000	TIME																											6

13554 Larwin Circle, Santa Fe Springs, CA 90670

Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)

	•
-	
	-
	E
_	
_	۰
	1
•	ø
	٠
275	п
	٦
	4
_	-
100	1
-	
	•
_	3
_	4
	2
	٦
	1
•	•
_	4
	J
	۲
_	e
	•
-	
	u
- Fi	
	i
	3
	ı
	ċ
	۹
	9
	•
	8
7	ġ
2	•

Job No.: 400775 C

REC	RELI	REC	RELI		7	(A)	4	2	N	=	0	9	00	7	6	Un	2	ω	N	7		A	SITE	PRO		PHC	ADI	PRC	CO	
RECEIVED FOR LABORATORY BY:	RELINQUISHED BY:	RECEIVED BY:	RELINQUISHED BY:	SIG	120-85084	-2,5	11:57	3,5054-0.5	5.1-100	50-15	5,0-2,0087	-25	2117	95052-019	7.5	1.5	530-15085	シア	-11.5	500-B1025	SAMPLE ID S	SAMPLED BY:	SITE ADDRESS: 5231	PROJECT NAME (1+1+5		PHONE:	ADDRESS:	PROJECT CONTACT:	COMPANY NAME:	
			/	SIGNATURE	-			-	_	-	11-20-1	_			_	_			_	かったし	SAMPLED	DATE		7 S				Gen	E	C
M				7	850 850	7211	1126	125	1112	1111	11-20-14 1110	1159	115	1148	- 1	On I	1135	C211	1125		S	TIME	CO1+5x		PROJECT INFORMATION			Acres CAT		CUSTOMER INFORMATION
					Co	7	-	3)	7		0	20	i	90	1175	0	N	O	7	50	LED TYPE		ALC		CTINE			7		AER IN
					1 10																	EDF Tu	X		ORMA					FORM.
																				extrat	pH/Time	Turn Around Time			NOIL	FAX:		Email:		MOITA
			1		_			_					_							ナかり		d Time								
MUNT			tro																	10	REMARKS	NORM		P.O						
7			1	PRINT																on and	S			P.O. No.						
			resolth	PRINT NAME																	Preserved	18 hr Other								
			14		_	_	_	-			12	-	_								NO. OF	 □ ₫								
																					100		A TP	H G	or	GR	0			
																					80	15/	1 ТР	H D	or	DRO	0			
0																					CA	ARB	ON	CH.	AIN	1				
Chuntel			CC													Ц							1076.00			ULL				
1			X	COMPANY NAME																								SHC	RT	
				NY NA											H											0 / 1			_	ANAL
				ME																-								dity		ANALYSIS REQUIRED
																					- 100					e, O	&G		-	QUIRED
					X			乂			X			X			X			X	0	AM).			31			-	
=			1		<u>/</u>			^			/ く			/ · ·			ハ			1		26	7	_				SIO		
11-241			11-21-16	DATE													+				(20	B	5	\	80	08	03		
70			900																											
700			Ö	TIME																										

13554 Larwin Circle, Santa Fe Springs, CA 90670

Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)

CHAIN OF CUSTODY RECORD

ECEIVED FOR LABORATORY BY: ANT	ELINQUISHED BY:	ECEIVED BY:	ELINQUISHED BY: C Sarrett	SIGNATURE PRINT NAME	-1.51 12:1	53070-015 1420	-2.5 1322	-1.5	510-5-005r	-215 1142	-1.5 1141	42061-0,2 11-12-16 11MO	-2.5 1105	1101	500-015 105	-25 1142	-1.5 1141	18052-022 NO	tract co	TYPE * pH/Time R		TE ADDRESS: 2 5231 Colfax AJA	ROJECT NAME VI HI+5	PROJECT INFORMATION	HONE: FAX:	DDRESS:	ROJECT CONTACT: ACCCCC++ Email:	OMPANY NAME: CSC	CUSTOMER INFORMATION	
			7		_														1		15N	744					*			
March			CSC	COMPANY NAME		*						×			×			*		VC OX CC pH Su	CARBO	(82 EN/ TSS ond	ATES 5 / B ucti	(8) F (8) (8) (OE ivity	ULL 260) / 1 y, Tu	(B)	dity		ANALYSIS REQUIRED	
11-21-16			11-21.66	DATE		X			^			Х			X			×		P	Ъ	7	A.	>	6	210	B			
000			400	TIME																										6

13554 Larwin Circle, Santa Fe Springs, CA 90670

Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)

CHAIN OF CUSTODY RECORD

ECEIV	ELINQ	ECEIVED BY:	ELINQ		0.	Ch.	4	Cu)	2	_	0			50	1	+	500			Sie	- 1	AMPLED BY:	ITE AD	ROJEC		HONE:	DDRESS:	ROJEC	OMP		A De
ECEIVED FOR LABORATORY BY:	ELINQUISHED BY:	ED BY:	ELINQUISHED BY:									-2.5	115	20-25-05	-2.5	5:1- NOT	200-8105	-2,5	7115	58070-05	SAMPLE ID	D BY:	ITE ADDRESS:	ROJECT NAME /			SS:	ROJECT CONTACT:	COMPANY NAME:		.A Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)
			1	SIGNATURE							-		_	11-20-11					_	11-15-16	SAMPLED	7	15231	SHHI				A Gai	500	CI	redited. (t
m			1									0685	0825	0010	1401	1403	1702	1221	1221	1420	SAMPLED		00156		PROJECT INFORMATION			していてすす		CUSTOMER INFORMATION	LAP NO. 143
			M											_	_					20	TYPE * pH	EDF Turi	x A		NFORMAT	-		m		INFORMA	35) & Mobil
			A																5	exheres	pH/Time	Turn Around Time	17 Ct		NOI	FAX:		Email:		TION	e Lab (ELAP N
Mortal			hos	PR											_	_	_	603	22	ever super	REMARKS	NORM 24 hr		P.O. No.							0. 2629)
1			Carr	PRINT NAME																70	Preserved	48 hr Other									
			1+									_	_	_	_	F	2	-	_	,	NO. OF										
L					_																100	15N					-				
					-																	15N							_		
Churth			CC							,												Cs				_					
THE			0	COI																	0)	ΥG	ENA	ATES	(8	260	В)	SHC	ORT		
				COMPANY NAME																Г	CC	DD /	TSS	5 / B	00) / 1	DS		100	AN	
				NAME											11.45						рН	, Co	ond	ucti	vit	y, Tı	urbi	dity		ALYSIS	
																		v			Sul	lfide	, C	yan	ide	e, O	&G			ANALYSIS REQUIRED	Pa
																						M 1								Ö	Page:
=			=					_						*			X			7	0)C(2	8	30	80	(_			6
11-4-16			11-21-16	DATE										*						1	P)C(P	5	6	010	013	7	_		of
900			20											1,3							1-		0	5	(00	0.	_	-		
C			0	TIME																		_									P

ELAP: 1435 LACSD: 10167 I3554 Larwin Cir., Santa F€ Springs, CA 90670 T 562.926.9848 F 562.926.8324

Job No: 612015

Page 1

Certificate of Analysis

Project No. 4007736
Project Site: NHHS

5231 Colfax Ave LA, CA Report Date: 12/29/16

Date Received: 12/05/16

Number of Samples: 46

Attention: Aarron Garrett Sample Matrix: Soil

This is the Certificate of Analysis for the following samples:

SAMPLE IDENTIFICATION	DATE OF SAMPLE	LABORATORY IDENTIFICATION
SB14-10	12/03/16	612015-01A
SB14-15	12/03/16	612015-02A
SB14-15 DUP	12/03/16	612015-03A
SB15-5	12/03/16	612015-04A
SB15-10	12/03/16	612015-05A
SB15-15	12/03/16	612015-06A
SB15-20	12/03/16	612015-07A
SB15-25	12/03/16	612015-08A
SB15-30	12/03/16	612015-09A
SB15-35	12/03/16	612015-10A
SB15-40	12/03/16	612015-11A
SB16-5	12/03/16	612015-12A
SB16-10	12/03/16	612015-13A
SB16-15	12/03/16	612015-14A
SB16-15 DUP	12/03/16	612015-15A
SB16-20	12/03/16	612015-16A
SB16-25	12/03/16	612015-17A
SB16-30	12/03/16	612015-18A
SB16-35	12/03/16	612015-19A
SB16-40	12/03/16	612015-20A
SB17-5	12/03/16	612015-21A
SB17-10	12/03/16	612015-22A
SB17-10 DUP	12/03/16	612015-23A
SB17-15	12/03/16	612015-24A
SB17-20	12/03/16	612015-25A
SB17-25	12/03/16	612015-26A
SB17-30	12/03/16	612015-27A
SB17-35	12/03/16	612015-28A
SB17-40	12/03/16	612015-29A
SB19-5	12/03/16	612015-30A
SB19-10	12/03/16	612015-31A
SB19-15	12/03/16	612015-32A
SB19-20	12/03/16	612015-33A
SB19-25	12/03/16	612015-34A
SB19-30	12/03/16	612015-35A
SB19-30 DUP	12/03/16	612015-36A
SB19-35	12/03/16	612015-37A
SB19-40	12/03/16	612015-38A
SB20-5	12/03/16	612015-39A
SB20-10	12/03/16	612015-40A
SB20-15	12/03/16	612015-41A
SB20-20	12/03/16	612015-42A
SB20-25	12/03/16	612015-43A
SB20-30	12/03/16	612015-44A
SB20-35	12/03/16	612015-45A
SB20-40	12/03/16	612015-46A

Reviewed and Approved:

Murlan L

EPA Method: 8260B

Certificate of Analysis

Project No. 4007736

Project Site: NHHS

5231 Colfax Ave

Page 2 **Job No:** 612015

Report Date: 12/29/16 Date of Sample: 12/03/16

Sample Matrix: Soil			Units:	ppb or µg/l	kg			Date I	Received:	12/05/16	
Client Sample ID:	SB14-10	SB14-15	SB14-15DUP	SB15-5	SB15-10	SB15-15	SB15-20	SB15-25	SB15-30	SB15-35	Dete
Dilution Factor:	0.9	0.9	1	1	0.9	0.9	0.9	0.9	0.9	0.9	Liı
	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(p
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Bromobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	,
Bromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Bromoform	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
Bromomethane	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	
n-Butylbenzene sec-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
tert-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Chloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
2-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
4-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
2-Chloroethyl vinyl ether	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Dibromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2-Dichloroethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-
1,1-Dichloroethene	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	-
cis-1,2 Dichloroethene Trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
1,3-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
2,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
1,1-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
Cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Isopropylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
4-Isopropyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Ę
Naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
n-propylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,1,2,2-Tetrachloroethane	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	1
Tetrachloroethene(PCE)	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
Toluene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
Trichloroethene(TCE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Total Xylenes	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2
Ethanol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	25
MTBE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
ETBE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
DIPE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
TAME	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
TBA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2
MEK	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
MIBK	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
2-Hexanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Ethyl Acetate	ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	5
Acetone	ND	KILY	ND	ND	ND	ND	ND	ND			

Certificate of Analysis

Project No. 4007736

Project Site: NHHS

5231 Colfax Ave

Report Date: 12/29/16 Date of Sample: 12/03/16

Job No: 612015

Page 3

EPA Method: 8260B Sample Matrix: Soil Units: ppb or µg/kg Date Received: 12/05/16

Client Sample ID:	SB15-40	SB16-5	SB16-10	SB16-15	SB16-15 DUP	SB16-20	SB16-25	SB16-30	SB16-35	SB16-40	Detect
Dilution Factor:	1 ()	1 (1)	0.9	1 (1)	1	1 ()	1 ()	1 (1)	1	0.9	Limi
	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Bromobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Bromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Bromoform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Bromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
n-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
sec-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
tert-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Chloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
2-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
4-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
2-Chloroethyl vinyl ether	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Dibromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
cis-1,2 Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,3-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
2,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,1-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Isopropylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
4-Isopropyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
n-propylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,1,2,2-Tetrachioroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Tetrachloroethene(PCE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
` ,	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	1
Toluene	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	- 1
1,2,3-Trichlorobenzene	ND	ND ND	ND	ND		ND	ND	ND	ND	ND ND	1
1,2,4-Trichlorobenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	- 1
1,1,2-Trichloroethane	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	1
Trichloroethene(TCE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Trichlorofluoromethane	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND	1
1,2,3-Trichloropropane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1
1,2,4-Trimethylbenzene	ND ND	ND ND		ND ND	ND ND	ND ND			ND ND	ND ND	1
1,3,5-Trimethylbenzene			ND				ND	ND			-
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Total Xylenes	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2
Ethanol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	25
MTBE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
ETBE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
DIPE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
TAME	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
TBA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
MEK	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
MIBK	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
2-Hexanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
Ethyl Acetate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
		ND	ND	ND	ND	ND	ND	ND	ND	ND	50
Acetone Analysis Date:	ND	שמו	IND	IND	ND		IND	110		110	

Certificate of Analysis

Project No. 4007736

Project Site: NHHS

Report Date: 12/29/16
Colfax Ave Date of Sample: 12/03/16

EPA Method: 8260B 5231 Colfax Ave
Sample Matrix: Soil Units: ppb or μg/kg

Date Received: 12/05/16

Job No: 612015

Page 4

Client Comple ID:											Detection
Client Sample ID:	SB17-5	SB17-10	SB17-10 DUP	SB17-15	SB7-20	SB17-25	SB17-30	SB17-35	SB17-40	SB19-5	Detection Limit
Dilution Factor:	(ppb)	0.9 (ppb)	(ppb)	0.9 (ppb)	0.9 (ppb)	(ppb)	0.9 (ppb)	(ppb)	(ppb)	0.9 (ppb)	(ppb)
_											
Benzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1 1
Bromobenzene Bromochloromethane	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	1
Bromoform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Bromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
n-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
sec-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
tert-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Chloromethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1 1
2-Chlorotoluene	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	1
4-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2
2-Chloroethyl vinyl ether Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Dibromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1 1
1,2-Dichloroethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1
1,1-Dichloroethene cis-1,2 Dichloroethene	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	1
Trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,3-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
2,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,1-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1 1
Hexachlorobutadiene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1
Isopropylbenzene 4-Isopropyltoluene	ND	ND	ND ND	ND	1						
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
n-propylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Tetrachloroethene(PCE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1
1,2,4-1 richlorobenzene 1,1,1-Trichloroethane	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	1
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Trichloroethene(TCE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Vinyl Chloride	ND	ND	ND ND	ND	1 2						
Total Xylenes	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2 250
Ethanol MTBE	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	250 1
ETBE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
DIPE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
TAME	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
TBA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
MEK	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
MIBK	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
2-Hexanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
Ethyl Acetate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Acetone Analysis Date:	ND 12/10/16	ND 12/10/16	ND 12/10/16	ND 12/10/16	ND 12/10/16	ND 12/10/16	ND 12/10/16	ND 12/10/16	ND 12/10/16	ND 12/10/16	50
ND: Not Detected Below (DF x Detection			DF: Dilution Fac		12/10/10	12/10/10	12/10/10	12/10/10	12/10/10	12/10/10	
A DOLCOLIN	- · · - · · · · · · · · · · · · · · · ·		<i></i> a								

Job No: 612015

Report Date: 12/29/16

Page 5

ND: Not Detected Below (DF x Detection Limit)

Client: CSC

Sample Matrix: Soil

EPA Method: 8260B

Certificate of Analysis

Project No. 4007736

Project Site: NHHS

5231 Colfax Ave

Date of Sample: 12/03/16 Units: ppb or µg/kg Date Received: 12/05/16

Client Sample ID: Detection SB19-10 SB19-15 SB19-25 SB19-30 SB19-30 DUP SB19-35 SB19-40 SB20-5 SB20-10 **Dilution Factor:** N 9 0.9 0.8 0.9 0.9 0.9 Limit (ppb) ND Benzene 1 ND Bromobenzene ND Bromochloromethane ND **Bromoform** ND **Bromomethane** ND ND ND ND ND ND ND ND n-Butvlbenzene ND sec-Butylbenzene tert-Butylbenzene ND Carbon Tetrachloride ND Chlorobenzene ND Chloroethane ND Chloroform ND Chloromethane ND ND ND ND ND ND ND ND ND 2-Chlorotoluene ND 4-Chlorotoluene ND 2 2-Chloroethyl vinyl ether ND Dibromochloromethane 1,2-Dibromo-3-chloropropane ND 1,2-Dibromoethane (EDB) ND Dibromomethane 1,2-Dichlorobenzene ND 1.3-Dichlorobenzene ND 1.4-Dichlorobenzene Dichlorodifluoromethane ND 1.1-Dichloroethane ND 1.2-Dichloroethane ND 1.1-Dichloroethene ND ND ND ND cis-1.2 Dichloroethene ND Trans-1.2-Dichloroethene NΠ NΠ ND NID ND ND ND ND ND NΠ 1.2-Dichloropropane ND ND ND ND ND ND 1,3-Dichloropropane ND 2,2-Dichloropropane ND ND ND ND ND ND ND ND 1,1-Dichloropropene ND Cis-1,3-Dichloropropene ND trans-1.3-Dichloropropene ND Ethylbenzene ND Hexachlorobutadiene ND Isopropylbenzene ND 4-Isopropyltoluene ND 5 Methylene Chloride ND 1 Naphthalene ND n-propylbenzene Styrene ND 1.1.1.2-Tetrachloroethane ND 1,1,2,2-Tetrachloroethane ND ND Tetrachloroethene(PCE) ND Toluene ND 1.2.3-Trichlorobenzene ND 1,2,4-Trichlorobenzene ND 1,1,1-Trichloroethane ND 1.1.2-Trichloroethane ND Trichloroethene(TCE) ND Trichlorofluoromethane ND 1.2.3-Trichloropropane ND 1,2,4-Trimethylbenzene 1 ND 1 1,3,5-Trimethylbenzene ND Vinvl Chloride ND 2 **Total Xylenes** ND 250 Ethanol ND MTBE ND **ETBE** 1 ND 1 DIPE ND **TAME** ND 20 **TBA** ND 10 MEK ND 10 **MIBK** ND 10 2-Hexanone ND 1 **Ethyl Acetate** ND 50 Acetone Analysis Date: 12/10/16 12/10/16 12/10/16 12/10/16 12/10/16 12/10/16 12/10/16 12/10/16 12/10/16 12/10/16

Job No: 612015

Page 6

Client: CSC

Certificate of Analysis

Project No. 4007736

Project Site: NHHS

5231 Colfax Ave

Report Date: 12/29/16 Date of Sample: 12/03/16

EPA Method: 8260B Sample Matrix: Soil Date Received: 12/05/16 Units: ppb or µg/kg

Client Sample ID:	SB20-15	SB20-20	SB20-25	SB20-30	SB20-35	SB20-40	Detection
Dilution Factor:	1	0.9	1	1	0.9	0.9	Limit
	(ppb)						
Benzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1
Bromobenzene Bromochloromethane	ND	ND	ND	ND	ND	ND	1
Bromoform	ND	ND	ND	ND	ND	ND	1
Bromomethane	ND	ND	ND	ND	ND	ND	1
n-Butylbenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1
sec-Butylbenzene tert-Butylbenzene	ND ND	ND	ND	ND	ND	ND	1
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	1
Chlorobenzene	ND	ND	ND	ND	ND	ND	1
Chloroethane	ND	ND	ND	ND	ND	ND	1
Chloroform Chloromethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1
2-Chlorotoluene	ND	ND	ND	ND	ND	ND	1
4-Chlorotoluene	ND	ND	ND	ND	ND	ND	1
2-Chloroethyl vinyl ether	ND	ND	ND	ND	ND	ND	2
Dibromochloromethane	ND	ND	ND	ND	ND	ND	1
1,2-Dibromo-3-chloropropane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1
1,2-Dibromoethane (EDB) Dibromomethane	ND	ND	ND	ND ND	ND	ND	1
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	1
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	1
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	1
Dichlorodifluoromethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1
1,1-Dichloroethane 1,2-Dichloroethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	· 1
cis-1,2 Dichloroethene	ND	ND	ND	ND	ND	ND	1
Trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	1
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	1
1,3-Dichloropropane 2,2-Dichloropropane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1
1,1-Dichloropropene	ND	ND	ND	ND	ND	ND	1
Cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	1
rans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	1
Ethylbenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1
Hexachlorobutadiene Isopropylbenzene	ND	ND	ND	ND	ND	ND	1
1-Isopropyltoluene	ND	ND	ND	ND	ND	ND	1
Methylene Chloride	ND	ND	ND	ND	ND	ND	5
Naphthalene	ND	ND	ND	ND	ND	ND	1
n-propylbenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1
Styrene 1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	1
1,1,2,2-Tetrachioroethane	ND	ND	ND	ND	ND	ND	1
Tetrachloroethene(PCE)	ND	ND	ND	ND	ND	ND	1
Toluene	ND	ND	ND	ND	ND	ND	1
1,2,3-Trichlorobenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane	ND ND	ND	ND	ND ND	ND	ND	1
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	1
Frichloroethene(TCE)	ND	ND	ND	ND	ND	ND	1
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	1
1,2,3-Trichloropropane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	1
Vinyl Chloride	ND	ND	ND	ND	ND	ND	1
Total Xylenes	ND	ND	ND	ND	ND	ND	2
Ethanol	ND	ND	ND	ND	ND	ND	250
MTBE	ND	ND	ND	ND	ND	ND	1
ETBE DIPE	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1
DIPE TAME	ND	ND	ND	ND	ND	ND	1
TBA	ND	ND	ND	ND	ND	ND	20
MEK	ND	ND	ND	ND	ND	ND	10
MIBK	ND	ND	ND	ND	ND	ND	10
2-Hexanone	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	10 1
Ethyl Acetate		ND	ND	ND	ND	ND	
Acetone	ND	שמו	שמו				50

LA, CA

Certificate of Analysis

Page 7

Client: CSC
Project Site: NHHS

NHHS 5231 Colfax Ave EPA Method: 8015M

units: mg/kg or ppm

Job No: 612015 Report Date: 12/29/16 Date of Sample: 12/03/16

Date Received: 12/05/16 **Sample Matrix:** Soil

Sample ID										ample	watrix: Soi	
SB14-10			Gas Range			_			Oil Range			
SB14-15 mg/kg	Sample ID	UNITS	(C4-C12)	DF	DLR	(C13-C22)	DF	DLR	(C23-36)	DF	DLR	
SB14-15 DUP mg/kg ND	SB14-10	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB14-15 DUP mg/kg ND	SB14-15	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB15-10	SB14-15 DUP	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB15-15 mg/kg ND	SB15-5			1	0.20	ND	1		ND	1		
SB15-20 mg/kg ND	SB15-10	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB15-25 mg/kg ND	SB15-15	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB15-30	SB15-20	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB15-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-40 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-5 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-10 mg/kg	SB15-25	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB15-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-5 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-15 DUP mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-25 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-5 mg/kg <	SB15-30	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB15-40 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-5 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-15 DUP mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-30 mg/kg	SB15-35		ND	1	0.20	ND	1	5.0	ND	1	10	
SB16-5 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-2D mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-25 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-5 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-10 mg/kg N	SB15-40			1	0.20	ND	1			1		
SB16-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-15 DUP mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-25 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-40 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-10 mg/kg				1			1			1		
SB16-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-15 DUP mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-25 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-5 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-10 mg/kg												
SB16-15 DUP mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-40 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-5 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-30 mg/kg												
SB16-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 I SB16-25 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-40 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-15 mg/												
SB16-25		5 5										
SB16-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-40 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-5 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-15 mg/kg												
SB16-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB16-40 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-5 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-10 DUP mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-25 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-35 mg/kg												
SB16-40 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-5 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-10 DUP mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-25 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-30 mg/kg												
SB17-5 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-10 DUP mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-25 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-40 mg/kg												
SB17-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-10 DUP mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-25 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-40 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-5 mg/kg												
SB17-10 DUP mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-25 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-5 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-20 mg/kg												
SB17-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-25 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-5 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 I SB19-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-20 mg/k							-					
SB17-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-25 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-5 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 I SB19-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-20 mg/k												
SB17-25 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 I SB17-40 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-5 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 I SB19-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 I SB19-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10												
SB17-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB17-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 I SB17-40 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-5 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 I SB19-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 I SB19-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 I SB19-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10												
SB17-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 I SB17-40 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-5 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 I SB19-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 I SB19-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 I SB19-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-25 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10												
SB17-40										1		
I SB19-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 I SB19-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-25 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1				1	0.20	ND	1			1		
I SB19-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-25 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-40 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10	SB19-5	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB19-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-25 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-30 DUP mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-30 DUP mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-30 DUP mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-5 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-15 mg/kg ND 1	SB19-10	mg/kg		1			1			1		
SB19-25 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-30 DUP mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-40 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-5 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10										-		
SB19-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-30 DUP mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-40 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-5 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10				-								
SB19-30 DUP mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-40 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-5 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10												
SB19-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB19-40 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-5 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10												
SB19-40 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-5 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10												
SB20-5 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10										1		
SB20-10 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10										1		
SB20-15 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10 SB20-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10				-						1		
SB20-20 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10				-						1		
										1		
3620-25 Hig/kg ND 1 0.20 ND 1 10	SB20-25	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB20-30 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10			ND	1	0.20	ND	1	5.0	ND	1	10	
SB20-35 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10	SB20-35	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB20-40 mg/kg ND 1 0.20 ND 1 5.0 ND 1 10	SB20-40	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
Method Blank mg/kg ND 1 0.20 ND 1 5.0 ND 1 10	Method Blan	k mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	

Sample Date: Analysis Date:

12/03/16 12/09-10/16 12/03/16 12/13-16/16 12/03/16 12/13-16/16

EPA Method: 8270C PAH SIM

Client: CSC

Sample Matrix: Soil

Certificate of Analysis

Project No. 4007736

Project Site: NHHS

5231 Colfax Ave

Units: ppb or µg/kg

Page 8
Job No: 612015

Report Date: 12/29/16

Date of Sample: 12/03/16

Date Received: 12/05/16

Client Sample ID:	SB14-10	SB14-15	SB14-15 DUP	SB15-5	SB15-10	SB15-15	SB15-20	SB15-25	SB15-30	Detection
Dilution Factor:	1	1	1	1	1	1	1	1	1	Limit
	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
1-Methlynaphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
2-Methlynaphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Acenaphthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Acenaphthylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Benzo(a)anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Benzo(b)fluoranthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Benzo(g,h,i)perylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Benzo(k)fluoranthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Chrysene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Dibenz(a,h)anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Fluoranthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Fluorene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Indeno(1,2,3-C,D)Pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Phenanthrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20

Analysis Date: 12/26/16 12/26/16 12/28/16 12/26/16 12/26/16 12/26/16 12/26/16 12/27/16

Client Sample ID:	SB15-35	SB15-40	SB16-5	SB16-10	SB16-15	SB16-15 DUP	SB16-20	SB16-25	SB16-30	Detection
Dilution Factor:	1	1	1	1	1	1	1	1	1	Limit
	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
1-Methlynaphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
2-Methlynaphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Acenaphthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Acenaphthylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Benzo(a)anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Benzo(b)fluoranthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Benzo(g,h,i)perylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Benzo(k)fluoranthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Chrysene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Dibenz(a,h)anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Fluoranthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Fluorene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Indeno(1,2,3-C,D)Pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Phenanthrene Phenanthrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20

Analysis Date: 12/27/16 12/27/16 12/27/16 12/27/16 12/27/16 12/27/16 12/27/16 12/27/16

Certificate of Analysis

Project No. 4007736

Project Site: NHHS

EPA Method: 8270C PAH SIM 5231 Colfax Ave **Sample Matrix**: Soil **Units**: ppb or μg/kg

Job No: 612015
Report Date: ######

Page 9

Date of Sample: #####

Date Received: #####

Client Sample ID:	SB16-35	SB16-40	SB17-5	SB17-10	SB17-10 DUP	SB17-15	SB17-20	SB17-25	SB17-30	Detection
Dilution Factor:	1	1	1	1	1	1	1	1	1	Limit
	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
1-Methlynaphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
2-Methlynaphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Acenaphthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Acenaphthylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Benzo(a)anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Benzo(b)fluoranthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Benzo(g,h,i)perylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Benzo(k)fluoranthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Chrysene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Dibenz(a,h)anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Fluoranthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Fluorene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Indeno(1,2,3-C,D)Pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Phenanthrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20

Analysis Date: 12/27/16 12/27/16 12/27/16 12/27/16 12/27/16 12/27/16 12/27/16 12/27/16 12/27/16

Client Sample ID:	SB17-35	SB17-40	SB19-5	SB19-10	SB19-15	SB19-20	SB19-25	SB19-30	SB19-30 DUP	Detection
Dilution Factor:	1	1	1	1	1	1	1	1	1	Limit
	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
1-Methlynaphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
2-Methlynaphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Acenaphthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Acenaphthylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Benzo(a)anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Benzo(b)fluoranthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Benzo(g,h,i)perylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Benzo(k)fluoranthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Chrysene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Dibenz(a,h)anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Fluoranthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Fluorene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Indeno(1,2,3-C,D)Pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Phenanthrene Phenanthrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20

Analysis Date: 12/27/16 12/27/16 12/27/16 12/27/16 12/27/16 12/27/16 12/28/16 12/28/16

I3554 Larwin Cir., Santa F∈ Springs, CA 90670 T 562.926.9848

F 562.926.8324

Page 10

Certificate of Analysis

Project No. 4007736

DF: Dilution Factor

Project Site: NHHS

Report Date: 12/29/16

Job No: 612015

EPA Method: 8270C PAH SIM

5231 Colfax Ave

Date of Sample: 12/03/16

Sample Matrix: Soil

Client: CSC

Units: ppb or μg/kg

Date Received: 12/05/16

Client Sample ID:	SB19-35	SB19-40	SB20-5	SB20-10	SB20-15	SB20-20	SB20-25	SB20-30	SB20-35	SB20-40	Detection
Dilution Factor:	1	1	1	1	1	1	1	1	1	1	Limit
	(ppb)										
1-Methlynaphthalene	ND	20									
2-Methlynaphthalene	ND	20									
Acenaphthene	ND	20									
Acenaphthylene	ND	20									
Anthracene	ND	20									
Benzo(a)anthracene	ND	20									
Benzo(a)pyrene	ND	20									
Benzo(b)fluoranthene	ND	20									
Benzo(g,h,i)perylene	ND	20									
Benzo(k)fluoranthene	ND	20									
Chrysene	ND	20									
Dibenz(a,h)anthracene	ND	20									
Fluoranthene	ND	20									
Fluorene	ND	20									
Indeno(1,2,3-C,D)Pyrene	ND	20									
Naphthalene	ND	20									
Phenanthrene	ND	20									
Pyrene	ND	20									
Analysis Date:	12/28/16	12/28/16	12/28/16	12/28/16	12/28/16	12/28/16	12/28/16	12/28/16	12/28/16	12/28/16	

Page 11

Client: CSC Project Site: NHHS

5231 Colfax Ave

LA, CA

Job No: 612015 Report Date: 12/29/16

> Date of Sample: 12/03/16 Date Received: 12/05/16 Sample Matrix: Soil

EPA Method: 6010B Metals **Units:** ppm or mg/Kg

	Client Sample ID:	SB14-10	SB14-15	SB14-15 DUP	SB15-5	SB15-10	SB15-15	SB15-20	SB15-25	SB15-30	Reportin
	Dilution Factor:	1	1	1	1	1	1	1	1	1	Limit
Analyte		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Antimony		ND	ND	ND	ND	ND	ND	ND	ND	ND	2.00
Arsenic		ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	2.00
Barium		140	147	146	111	132	127	70.6	50.8	179	1.00
Beryllium		ND	ND	ND	ND	ND	ND	ND	ND	ND	1.00
Cadmium		ND	ND	ND	ND	ND	ND	ND	ND	ND	1.00
Chromium		20.6	17.2	21.7	29.9	18.5	20.6	11.9	7.60	22.5	1.00
Cobalt		13.3	12.3	13.5	10.8	11.9	12.1	8.19	5.84	17.6	2.00
Copper		25.9	19.7	23.8	20.4	21.7	22.2	13.2	9.30	32.0	2.00
Lead		4.39	4.24	4.53	3.17	3.28	3.21	ND	ND	3.16	2.00
Molybdenum		ND	ND	ND	ND	ND	ND	ND	ND	ND	2.00
Nickel		17.1	13.7	17.1	14.1	15.9	14.7	8.53	5.62	17.3	2.00
Selenium		ND	ND	ND	ND	ND	ND	ND	ND	ND	2.00
Silver		ND	ND	ND	ND	ND	ND	ND	ND	ND	1.00
Thallium		ND	ND	ND	ND	ND	ND	ND	ND	ND	2.00
Vanadium		44.6	36.1	46.1	34.4	40.1	37.4	28.5	20.3	41.9	2.00
Zinc		53.2	46.6	52.8	44.7	47.3	44.2	26.7	16.8	58.2	5.00
	Analysis Date:	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	

EPA Method: 7470A Mercury **Units:** ppm or mg/Kg

	Client Sample ID:	SB14-10	SB14-15	SB14-15 DUP	SB15-5	SB15-10	SB15-15	SB15-20	SB15-25	SB15-30	Reporting
	Dilution Factor:	1	1	1	1	1	1	1	1	1	Limit
Analyte		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Mercury		ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05

ND: Not Detected Below (DF x Detection Limit)

Page 12

Client: CSC

Project Site: NHHS

5231 Colfax Ave LA, CA Job No: 612015 Report Date: 12/29/16

Date of Sample: 12/03/16 Date Received: 12/05/16 Sample Matrix: Soil

EPA Method: 6010B Metals **Units:** ppm or mg/Kg

	Client Sample ID:	SB15-35	SB15-40	SB16-5	SB16-10	SB16-15	SB16-15 DUP	SB16-20	SB16-25	SB16-30	Reporting
	Dilution Factor:	1	1	1	1	1	1	1	1	1	Limit
Analyte		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Antimony		ND	ND	ND	ND	ND	ND	ND	ND	ND	2.00
Arsenic		ND	ND	ND	ND	ND	ND	ND	ND	ND	2.00
Barium		216	147	150	133	134	131	82.2	65.7	213	1.00
Beryllium		ND	ND	ND	ND	ND	ND	ND	ND	ND	1.00
Cadmium		ND	ND	ND	ND	ND	ND	ND	ND	ND	1.00
Chromium		23.2	25.8	19.2	21.2	20.7	20.6	12.8	6.00	22.3	1.00
Cobalt		17.2	20.2	13.5	12.7	11.6	11.7	8.45	5.18	17.1	2.00
Copper		29.1	35.2	21.7	21.4	21.6	22.4	12.8	11.4	31.2	2.00
Lead		2.28	4.04	3.70	3.18	4.38	4.54	3.36	2.97	4.89	2.00
Molybdenum		ND	ND	ND	ND	ND	ND	ND	ND	ND	2.00
Nickel		16.5	15.8	15.3	16.6	15.7	17.2	8.93	5.66	17.3	2.00
Selenium		ND	ND	ND	ND	ND	ND	ND	ND	ND	2.00
Silver		ND	ND	ND	ND	ND	ND	ND	ND	ND	1.00
Thallium	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.00
Vanadium	<u> </u>	42.3	63.8	39.5	39.6	40.3	42.9	31.2	15.7	42.3	2.00
Zinc		53.1	56.4	50.9	48.3	47.7	47.9	28.6	21.2	55.8	5.00
•	Analysis Date:	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	

EPA Method: 7470A Mercury **Units:** ppm or mg/Kg

	Client Sample ID:	SB14-10	SB14-15	SB14-15 DUP	SB15-5	SB15-10	SB15-15	SB15-20	SB15-25	SB15-30	Reporting
	Dilution Factor:	1	1	1	1	1	1	1	1	1	Limit
Analyte		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Mercury		ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05
	Analysis Date:	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	

ND: Not Detected Below (DF x Detection Limit)

Page 13

Client: CSC Project Site: NHHS

5231 Colfax Ave

LA, CA

Job No: 612015 Report Date: 12/29/16 Date of Sample: 12/03/16

Date Received: 12/05/16

Sample Matrix: Soil

EPA Method: 6010B Metals **Units:** ppm or mg/Kg

CI	ient Sample ID:	SB16-35	SB16-40	SB17-5	SB17-10	SB17-10 DUP	SB17-15	SB17-20	SB17-25	SB17-30	Reporting
	Dilution Factor:	1	1	1	1	1	1	1	1	1	Limit
Analyte		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Antimony		ND	ND	ND	ND	ND	ND	ND	ND	ND	2.00
Arsenic		ND	ND	ND	ND	ND	ND	ND	ND	ND	2.00
Barium		95.9	60.8	96.9	134	122	150	94.4	46.7	208	1.00
Beryllium		ND	ND	ND	ND	ND	ND	ND	ND	ND	1.00
Cadmium		ND	ND	ND	ND	ND	ND	ND	ND	ND	1.00
Chromium		12.5	24.9	15.4	21.6	22.2	22.6	17.7	8.98	22.8	1.00
Cobalt		8.82	7.28	10.1	13.9	12.7	14.3	11.2	5.39	16.4	2.00
Copper		13.3	21.9	14.6	23.8	24.9	24.9	17.2	8.74	31.1	2.00
Lead		2.17	2.52	ND	3.87	5.18	4.50	2.58	ND	2.32	2.00
Molybdenum		ND	ND	ND	ND	ND	ND	ND	ND	ND	2.00
Nickel		9.50	7.95	11.3	18.5	18.2	17.7	13.3	6.57	16.5	2.00
Selenium		ND	ND	ND	ND	ND	ND	ND	ND	ND	2.00
Silver		ND	ND	ND	ND	ND	ND	ND	ND	ND	1.00
Thallium		ND	ND	ND	ND	ND	ND	ND	ND	ND	2.00
Vanadium		20.9	48.9	35.1	47.5	48.9	45.2	42.2	22.9	42.9	2.00
Zinc		28	20.4	36.5	54.6	53.9	55.2	36.7	18.4	55.7	5.00
	Analysis Date:	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	

EPA Method: 7470A Mercury **Units:** ppm or mg/Kg

	Client Sample ID:	SB14-10	SB14-15	SB14-15 DUF	SB15-5	SB15-10	SB15-15	SB15-20	SB15-25	SB15-30	Reporting
	Dilution Factor:	1	1	1	1	1	1	1	1	1	Limit
Analyte		mg/kg	mg/kg								
Mananna		ND	0.05								
Mercury	Analysis Date:	ND 12/8/16	0.05								

ND: Not Detected Below (DF x Detection Limit)

Page 14

Client: CSC

Project Site: NHHS

5231 Colfax Ave

LA, CA

Job No: 612015 **Report Date:** 12/29/16

> Date of Sample: 12/03/16 Date Received: 12/05/16 Sample Matrix: Soil

EPA Method: 6010B Metals Units: ppm or mg/Kg

	Client Sample ID:	SB17-35	SB17-40	SB19-5	SB19-10	SB19-15	SB19-20	SB19-25	SB19-30	SB19-30 DUP	Reporting
	Dilution Factor:	1	1	1	1	1	1	1	1	1	Limit
Analyte		mg/kg	mg/kg								
		ND	0.00								
Antimony		ND	2.00								
Arsenic		ND	2.00								
Barium		131	59.6	111	127	89.3	95.4	102	142	136	1.00
Beryllium		ND	1.00								
Cadmium		ND	1.00								
Chromium		21.1	10.9	18.8	21.9	14.5	17.4	14.5	24.1	23.4	1.00
Cobalt		16.4	7.90	11.4	13.1	9.20	10.3	10.1	13.5	13.8	2.00
Copper		26.3	12.9	18.1	25.6	15.1	15.7	13.4	22.9	24.0	2.00
Lead		3.47	ND	2.84	5.44	2.78	2.07	6.92	4.12	4.81	2.00
Molybdenum		ND	2.00								
Nickel		17.1	8.29	14.5	19.1	12.3	12.7	12.2	19.3	19.1	2.00
Selenium		ND	2.00								
Silver		ND	1.00								
Thallium		ND	2.00								
Vanadium		46.1	25.5	39.3	47.4	30.2	37.7	34.2	46.0	44.9	2.00
Zinc		48.5	24.4	39.5	52.9	31.9	34.2	38.9	51.8	49.2	5.00
	Analysis Date:	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	

EPA Method: 7470A Mercury Units: ppm or mg/Kg

	Client Sample ID:	SB14-10	SB14-15	SB14-15 DUP	SB15-5	SB15-10	SB15-15	SB15-20	SB15-25	SB15-30	Reporting
	Dilution Factor:	1	1	1	1	1	1	1	1	1	Limit
Analyte		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Mercury		ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05
	Analysis Date:	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	

ND: Not Detected Below (DF x Detection Limit)

Page 15

Client: CSC Project Site: NHHS

5231 Colfax Ave

LA, CA

Job No: 612015 Report Date: 12/29/16

Date of Sample: 12/03/16
Date Received: 12/05/16

Sample Matrix: Soil

EPA Method: 6010B Metals **Units:** ppm or mg/Kg

Cli	ient Sample ID:	SB19-35	SB19-40	SB20-5	SB20-10	SB20-15	SB20-20	SB20-25	SB20-30	SB20-35	Reporting
	Dilution Factor:	1	1	1	1	1	1	1	1	1	Limit
Analyte		mg/kg									
Antimony		ND	2.00								
Arsenic		ND	2.00								
Barium		130	82.8	125	94.6	145	99.9	129	214	200	1.00
Beryllium		ND	1.00								
Cadmium		ND	1.00								
Chromium		22.3	17.3	20.9	19.6	23.6	18.2	21.6	27.4	28.4	1.00
Cobalt		16.4	11.5	11.3	11.7	14.0	10.5	13.0	19.9	19.1	2.00
Copper		28.0	22.6	18.1	19.4	23.9	16.7	24.8	35.5	31.8	2.00
Lead		2.53	2.94	2.73	3.33	3.49	2.27	3.1	4.32	2.64	2.00
Molybdenum		ND	2.00								
Nickel		16.9	13.3	15.0	16.3	19.2	13.5	17.6	21.5	19.8	2.00
Selenium		ND	2.00								
Silver		ND	1.00								
Thallium		ND	2.00								
Vanadium		40.6	38.5	42.6	44.9	48.6	44.2	42.8	55.1	47.9	2.00
Zinc		54.0	41.3	42.5	47.2	56.1	37.4	46.3	62.2	59.8	5.00
	Analysis Date:	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	12/8/16	

EPA Method: 7470A Mercury **Units:** ppm or mg/Kg

	Client Sample ID:	SB14-10	SB14-15	SB14-15 DUP	SB15-5	SB15-10	SB15-15	SB15-20	SB15-25	SB15-30	Reporting
	Dilution Factor:	1	1	1	1	1	1	1	1	1	Limit
Analyte		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Mercurv		ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05

ND: Not Detected Below (DF x Detection Limit)

Page 16

Client: CSC Project Site: NHHS

5231 Colfax Ave

LA, CA

Job No: 612015

Report Date: 12/29/16 **Date of Sample:** 12/03/16 **Date Received:** 12/05/16

Sample Matrix: Soil

EPA Method: 6010B Metals **Units:** ppm or mg/Kg

Client S	ample ID: SB20-40	Reporting
Diluti	on Factor: 1	Limit
Analyte	mg/kg	mg/kg
Antimony	ND	2.00
Arsenic	ND	2.00
Barium	113	1.00
Beryllium	ND	1.00
Cadmium	ND	1.00
Chromium	15.9	1.00
Cobalt	9.46	2.00
Copper	19.7	2.00
Lead	2.05	2.00
Molybdenum	ND	2.00
Nickel	12.1	2.00
Selenium	ND	2.00
Silver	ND	1.00
Thallium	ND	2.00
Vanadium	35.6	2.00
Zinc	41.5	5.00

Analysis Date: 12/8/16

EPA Method: 7470A Mercury **Units**: ppm or mg/Kg

	Client Sample ID: SB14-10	Reporting
	Dilution Factor: 1	Limit
Analyte	mg/kg	mg/kg
Mercury	ND	0.05

Analysis Date: 12/8/16

ND: Not Detected Below (DF x Detection Limit)

Job No: 612015

Certificate of Analysis

Page 17

QC Analysis Date: 12/09/16

QC Lab ID: 612015-4A

Units: ppb

QUALITY CONTROL DATA

EPA METHOD: 8260B(VOC's)

ANALYTE	BLANK RESULT	SPIKE CONC.	MS % REC	MSD % REC	% RPD	% RPD ACCEPT LIMITS	% REC ACCEPT LIMITS
1,1-Dichloroethene	ND	25	98.5	92.1	6.7%	30	70-130
Benzene	ND	25	101.8	90.9	11.3%	30	70-130
Trichloroethylene	ND	25	103.4	92.2	11.5%	30	70-130
Toluene	ND	25	103.1	91.7	11.7%	30	70-130
Chlorobenzene	ND	25	106.3	91.4	15.1%	30	70-130

QC Analysis Date: 12/09/16

QC Lab ID: 612015-3A

Units: ppm

QUALITY CONTROL DATA

EPA METHOD: 8015M (TPH Gas Range Organics)

			MS	MSD		ACCEPT	ACCEPT
ANALYTE	BLANK RESULT	SPIKE CONC.	% REC	% REC	% RPD	LIMITS	LIMITS
GRO (TPH)	ND	0.5	86.4	84.4	2.3%	30	70-130

QC Analysis Date: 12/13/16

QC Lab ID: 612015-1A

Units: ppm

QUALITY CONTROL DATA

EPA METHOD: 8015M (TPH Gas Range Organics)

ANALYTE	BLANK RESULT	SPIKE CONC.	MS % REC	MSD % REC	% RPD	% RPD ACCEPT LIMITS	% REC ACCEPT LIMITS
DRO (TPH)	ND	0.5	107.0	124.0	14.7%	30	70-130

Job No: 612015

Certificate of Analysis

Page 18

QC Analysis Date: 12/08/16

QC Lab ID: 612034-1A Units: ppm

QUALITY CONTROL DATA (MS/MSD)

EPA METHOD: 6010B

			MS	MSD		% RPD ACCEPT	% REC ACCEPT
ANALYTE	BLANK RESULT	SPIKE CONC.	% REC	% REC	% RPD	LIMITS	LIMITS
Antimony	ND	1.00	107.0	109.0	1.9%	30	70-130
Arsenic	ND	1.00	102.0	105.0	2.9%	30	70-130
Barium	ND	1.00	104.0	105.0	1.0%	30	70-130
Beryllium	ND	1.00	110.0	110.0	0.0%	30	70-130
Cadmium	ND	1.00	103.0	105.0	1.9%	30	70-130
Chromium	ND	1.00	112.0	111.0	0.9%	30	70-130
Cobalt	ND	1.00	106.0	109.0	2.8%	30	70-130
Copper	ND	1.00	103.0	105.0	1.9%	30	70-130
Lead	ND	1.00	109.0	109.0	0.0%	30	70-130
Molybdenum	ND	1.00	109.0	110.0	0.9%	30	70-130
Nickel	ND	1.00	112.0	114.8	2.5%	30	70-130
Selenium	ND	1.00	108.0	109.0	0.9%	30	70-130
Silver	ND	1.00	130.0	115.0	12.2%	30	70-130
Thallium	ND	1.00	104.0	106.0	1.9%	30	70-130
Vanadium	ND	1.00	110.0	110.0	0.0%	30	70-130
Zinc	ND	1.00	109.0	111.0	1.8%	30	70-130

13554 Larwin Circle, Santa Fe Springs, CA 90670

Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)

CHAIN OF CUSTODY RECORD

95640019 100019

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)	3b (ELAP No. 2629)	Page: \	of	V
CUSTOMER INFORMATION	N	ANALYSIS REQUIRED		
COMPANY NAME: CSC		Con.		
PROJECT CONTACT: A Garcett Email:	II:		_	
الاحد ال	#120 Lakewood	D) B) IDS	32	
F,		DRC 1 3260 D / 1 Ty, To	<u></u>	
PROJECT INFORMATION		or AIN 3) F 3 (8 50E ivit	8	
PROJECT NAME NHHS	P.O. No.	s / B ucti yan Aeto	(
SITE ADDRESS: 5231 Colfax Ave. 4	A	(82) ENA TSS	25	
	NORM 24 hr 48 hr Other	Cs YGD/ . Cc	CP.	
SAMPLE D SAMPLED TYPE • pH/Time	REMARKS Preserved CONT	OX CO PH	PA	
0 12-3-16 1118 00	extract for sid csp side 1		X	
1 Pur 1123	· 6/E-			
3 5735- 5	-			
ō				
5 5B15 - 15 725				
6 5815 - 20 730				
7 5315-25 740				
8 5315-30 745				
, 58-5-56				
10 5815 - 40 755				
" 5B16-5 815				
			*	
+000)2			
14 5816-20 835				
52-7185				
1 528 1 02-3185 1	_			
SIGNATURE	PRINT NAME	COMPANY NAME	DATE	TIME
RELINQUISHED BY:	Acron Carrett	650	12/5/16	1015
RECEIVED BY:				
RELINQUISHED BY:				
RECEIVED FOR LABORATORY BY:	Mortinal	Chinh	142/11	1015

13554 Larwin Circle, Santa Fe Springs, CA 90670

CHAIN OF CUSTODY RECORD

952200h ::ON 90F Page: 2

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629) Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com

e c	ÆL	EC	Ē		0-	Un	4	w	N	-	0	-	ω	1	-	U	-	w	2	-		AA	SITE	RO		OHO	ADE	RO	00		ı
RECEIVED FOR LABORATORY BY:	RELINQUISHED BY:	RECEIVED BY:	RELINQUISHED BY:	SI	5B19-30+a	5819.25	5819-20	5819-15	5B19-10	5319-5	5817-40	5817-35	5817.30	5817 -25	5817-20	5817-15	5817-100	51817-5	0h-9184	516-35	SAMPLE ID	SAMPLED BY:	SITE ADDRESS: 5231	PROJECT NAME		HONE:	ADDRESS: UGIO	PROJECT CONTACT:	COMPANY NAME:		
RY BY:			1	SIGNATUR	100			_	-	_		_			-		0		-	12-3-16	DATE		18.	SHHO			23	4 C	S		
M			N	m	123	(227)	1223	248	1213	1207	10	5101	1010	100	100	59	او	ano	850	6 845	-	Н	Ç	V	PROJ		MCHA	4 Caract	C	CUSTOMER INFORMATION	
					31	72	2	Œ	W	07	1020	2	Ö	1005	1000	583	250	0	C	1	SAMPLED T	П	Colfax		PROJECT INFORMATION			4		MER II	l
					_															40	TYPE *	EDF 1			FORM		الدعم			VFORA	
																				LXLXCT	pH/Time	urn Aro	4.		ATION	FAX:	Q	Email:		MIOI	l
																					W.	EDF Turn Around Time									
~してす~し			two			-		_	_	_	_	_	_			-				for	20	NORM					#170				l
7-5			0	PR																25	RKS	24 hr		P.O. No.			2				l
			Juckt	PRINT NAME															4.	3	Pres	hr 48 hr					La Krussch				l
			+	AE .					_	_	_	_	_					0	1697	\	Preserved	Other					8				
					h	_								_	-	-	N	-	-	-	NO. OF										l
					П					-										Г		5M	TP	H G	or	GR	0				١
																					801	5M	TP	H D	or	DR	0				l
Churt			E		-							_								-	CA	RBC	NC	СН	AIN	ı					l
7			6		-																vo	Cs	(82	60 I	3) F	ULL					l
				COMP																	ОХ	ΥG	ENA	ATES	8) 8	260) B)	SHC	ORT		
				COMPANY NAME																	СО	D/	TSS	S / E	108)/	TDS			ANA	l
				AME																	pH,	Co	ond	uct	ivit	y, T	urbi	dity		LYSIS R	l
																					Sulf		72.00			e, C	&G			ANALYSIS REQUIRED	l
					_										-	_					CA										ľ
اك			7		-	×												×			P	41-	45	٤	52	-76	2	IN	_		,
1/s/1			11/3/10	DATE														/			P	1/6	3		ŏ	0	8	2			
10			_																												l
510			1015	TIME																											

NOTE: Samples are discarded 30 days after results are reported unless other arrangements are made.

*Type: so-Soil GW-Ground Water WW-Waste Water AQ-Aqueous A-Air OT-Other

13554 Larwin Circle, Santa Fe Springs, CA 90670

Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)

CHAIN OF CUSTODY RECORD

JOB NO.: 4007736

CA Dept of Health Accreaited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)	db (ELAP No. 2629)	Page: 5	of	5
CUSTOMER INFORMATION	N	ANALYSIS REQUIRED		
COMPANY NAME: CSC				
PROJECT CONTACT: A Correct + Email:)	dity		_
ADDRESS: 4010 Watson Plaza	Oc \$ 170 bellewand	D B) :		_
		DRC I 2260 D / T y, Tu		
PROJECT INFORMATION		or l AIN 3) F 5 (8: 5 OD ivity		
PROJECT NAME 2 HITS	P.O. No.	CHA 60 B ATES 7 B ucti yan		
SITE ADDRESS: 5231 COLFEX DE.	TPI	TPHON (820 ENATES)		
EDF	Turn Around Time NORM 24 hr 48 hr Other 55	SM RBC Cs (Cs (CyGE D / Co ide		
SAMPLE D SAMPLED TYPE • DH/Time	REMARKS Preserved CONT	801 CA VO OX CO pH, Sulf		
5 2316 1241 60	and from and and	-		+
0 1 247 1	-			
3 5320-5 1310				
4 5B20-10 1313				
5 5820-15 1318				
6 5820 - 20 1323				
7 5520-25 1729				N.
8 5820-30 1334				
9 5820-35 1339			4	9
10 5820-40 1 1345	-			10
=				90
12				
13				
14				
15				
16				
SIGNATURE	PRINT NAME	COMPANY NAME	DATE	TIME
RELINQUISHED BY:	Acros Corrett	550	12/5/16	1015
RECEIVED BY:				
RELINQUISHED BY:				
RECEIVED FOR LABORATORY BY:	Mento	(h-H)	145/11	5101

Attention: Aarron Garrett

ELAP: 1435 LACSD: 10167 13554 Larwin Cir., Santa Fe Springs, CA 90670 T 562.926.9848 F 562.926.8324

Certificate of Analysis

Project No. 4007736 Project Site: NHHS

5231 Colfax Ave

LA, CA

Report Date: 01/14/17 Date Received: 12/12/16

Job No: 612047

Page 1

Number of Samples: 38 Sample Matrix: Soil

This is the Certificate of Analysis for the following samples:

SB2-10	SAMPLE IDENTIFICATION	DATE OF SAMPLE	LABORATORY IDENTIFICATION
SB2-20	SB2-10	12/10/16	612047-01A
SB3-10 12/10/16 612047-04A SB3-15 12/10/16 612047-05A SB3-20 12/10/16 612047-07A SB4-10 12/10/16 612047-07A SB4-15 12/10/16 612047-08A SB4-20 12/10/16 612047-09A SB5-10 12/10/16 612047-10A SB5-15 12/10/16 612047-11A SB5-20 12/10/16 612047-12A SB6-10 12/10/16 612047-12A SB6-15 12/10/16 612047-14A SB6-15 12/10/16 612047-14A SB6-20 12/10/16 612047-15A SB7-10 12/10/16 612047-15A SB7-15 12/10/16 612047-16A SB7-10 12/10/16 612047-16A SB7-10 12/10/16 612047-16A SB7-20 12/10/16 612047-18A SB8-8 12/10/16 612047-19A SB8-8 12/10/16 612047-20A SB9-8 12/10/16 612047-21A	SB2-15	12/10/16	612047-02A
SB3-15 12/10/16 612047-05A SB3-20 12/10/16 612047-06A SB4-10 12/10/16 612047-07A SB4-15 12/10/16 612047-08A SB4-20 12/10/16 612047-09A SB5-10 12/10/16 612047-10A SB5-15 12/10/16 612047-10A SB5-10 12/10/16 612047-10A SB5-10 12/10/16 612047-10A SB5-10 12/10/16 612047-10A SB5-20 12/10/16 612047-12A SB6-10 12/10/16 612047-13A SB6-15 12/10/16 612047-13A SB6-15 12/10/16 612047-14A SB6-20 12/10/16 612047-14A SB7-10 12/10/16 612047-15A SB7-15 12/10/16 612047-17A SB7-20 12/10/16 612047-17A SB8-8 12/10/16 612047-20A SB9-4 12/10/16 612047-20A SB9-8 12/10/16 612047-21A	SB2-20	12/10/16	612047-03A
\$B3-20 \$B4-10 \$12/10/16 \$12047-07A \$B4-15 \$12/10/16 \$12047-08A \$B4-20 \$12/10/16 \$12047-09A \$B5-10 \$12/10/16 \$12047-09A \$12/10/16 \$12047-10A \$12/10/16 \$12047-10A \$12/10/16 \$12047-10A \$12/10/16 \$12047-11A \$12/10/16 \$12047-12A \$12/10/16 \$12047-13A \$12/10/16 \$12/10/16 \$12047-13A \$12/10/16 \$12047-21A \$12/10/16 \$12047-22A \$12/10/16 \$12047-22A \$12/10/16 \$12047-23A \$12/10/16 \$12047-33A	SB3-10	12/10/16	612047-04A
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	SB3-15	12/10/16	612047-05A
SB4-15 12/10/16 612047-08A SB4-20 12/10/16 612047-09A SB5-10 12/10/16 612047-10A SB5-15 12/10/16 612047-11A SB5-20 12/10/16 612047-12A SB6-10 12/10/16 612047-13A SB6-15 12/10/16 612047-14A SB6-20 12/10/16 612047-15A SB7-10 12/10/16 612047-16A SB7-15 12/10/16 612047-17A SB7-20 12/10/16 612047-17A SB8-4 12/10/16 612047-19A SB8-4 12/10/16 612047-20A SB9-4 12/10/16 612047-20A SB9-8 12/10/16 612047-21A SB18-10 12/10/16 612047-24A SB18-15 12/10/16 612047-24A SB18-20 12/10/16 612047-26A SB18-25 12/10/16 612047-27A SB18-30 12/10/16 612047-29A SB18-30 12/10/16 612047-29A <	SB3-20	12/10/16	612047-06A
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	SB4-10	12/10/16	612047-07A
SB5-10 12/10/16 612047-10A SB5-15 12/10/16 612047-11A SB5-20 12/10/16 612047-13A SB6-10 12/10/16 612047-13A SB6-15 12/10/16 612047-13A SB6-15 12/10/16 612047-14A SB6-20 12/10/16 612047-15A SB7-10 12/10/16 612047-17A SB7-20 12/10/16 612047-17A SB7-20 12/10/16 612047-18A SB8-4 12/10/16 612047-20A SB8-8 12/10/16 612047-20A SB9-8 12/10/16 612047-21A SB18-5 12/10/16 612047-22A SB18-5 12/10/16 612047-22A SB18-10 12/10/16 612047-23A SB18-15 12/10/16 612047-25A SB18-20 12/10/16 612047-27A SB18-25 12/10/16 612047-27A SB18-35 12/10/16 612047-27A SB18-30 12/10/16 612047-30A	SB4-15		0.1=0.11
SB5-15 12/10/16 612047-11A SB5-20 12/10/16 612047-12A SB6-10 12/10/16 612047-13A SB6-15 12/10/16 612047-15A SB6-20 12/10/16 612047-15A SB7-10 12/10/16 612047-16A SB7-15 12/10/16 612047-17A SB7-20 12/10/16 612047-19A SB8-4 12/10/16 612047-20A SB9-4 12/10/16 612047-20A SB9-8 12/10/16 612047-21A SB9-8 12/10/16 612047-23A SB18-5 12/10/16 612047-23A SB18-10 12/10/16 612047-25A SB18-20 12/10/16 612047-25A SB18-25 12/10/16 612047-27A SB18-30 12/10/16 612047-27A SB18-35 12/10/16 612047-29A SB18-30 12/10/16 612047-29A SB10-3 12/10/16 612047-30A SB110-5 12/10/16 612047-30A	SB4-20	12/10/16	612047-09A
SB5-20 12/10/16 612047-12A SB6-10 12/10/16 612047-13A SB6-15 12/10/16 612047-14A SB6-20 12/10/16 612047-15A SB7-10 12/10/16 612047-16A SB7-15 12/10/16 612047-18A SB7-20 12/10/16 612047-18A SB8-4 12/10/16 612047-20A SB8-8 12/10/16 612047-21A SB9-8 12/10/16 612047-21A SB9-8 12/10/16 612047-23A SB18-5 12/10/16 612047-23A SB18-10 12/10/16 612047-24A SB18-20 12/10/16 612047-25A SB18-20 12/10/16 612047-26A SB18-30 12/10/16 612047-28A SB18-35 12/10/16 612047-29A SB18-40 12/10/16 612047-29A SB18-40 12/10/16 612047-30A SB110-5 12/10/16 612047-30A SB110-10 12/10/16 612047-31A	SB5-10	12/10/16	612047-10A
SB6-10 12/10/16 612047-13A SB6-15 12/10/16 612047-14A SB6-20 12/10/16 612047-15A SB7-10 12/10/16 612047-16A SB7-15 12/10/16 612047-17A SB7-20 12/10/16 612047-19A SB8-4 12/10/16 612047-19A SB8-8 12/10/16 612047-20A SB9-4 12/10/16 612047-21A SB9-8 12/10/16 612047-22A SB18-5 12/10/16 612047-23A SB18-10 12/10/16 612047-24A SB18-15 12/10/16 612047-25A SB18-20 12/10/16 612047-26A SB18-25 12/10/16 612047-26A SB18-35 12/10/16 612047-28A SB18-35 12/10/16 612047-29A SB18-36 12/10/16 612047-29A SB18-40 12/10/16 612047-30A SB10-5 12/10/16 612047-31A SB110-5 12/10/16 612047-32A	SB5-15	12/10/16	612047-11A
SB6-15 12/10/16 612047-14A SB6-20 12/10/16 612047-15A SB7-10 12/10/16 612047-16A SB7-15 12/10/16 612047-17A SB7-20 12/10/16 612047-18A SB8-4 12/10/16 612047-19A SB8-8 12/10/16 612047-20A SB9-4 12/10/16 612047-21A SB9-8 12/10/16 612047-22A SB18-5 12/10/16 612047-23A SB18-10 12/10/16 612047-24A SB18-15 12/10/16 612047-25A SB18-20 12/10/16 612047-26A SB18-25 12/10/16 612047-27A SB18-30 12/10/16 612047-28A SB18-35 12/10/16 612047-29A SB18-40 12/10/16 612047-29A SB18-40 12/10/16 612047-30A SB110-5 12/10/16 612047-30A SB110-10 12/10/16 612047-33A SB110-20 12/10/16 612047-33A <td>SB5-20</td> <td></td> <td>612047-12A</td>	SB5-20		612047-12A
SB6-20 12/10/16 612047-15A SB7-10 12/10/16 612047-16A SB7-15 12/10/16 612047-17A SB7-20 12/10/16 612047-18A SB8-4 12/10/16 612047-20A SB9-8 12/10/16 612047-20A SB9-8 12/10/16 612047-21A SB18-5 12/10/16 612047-22A SB18-10 12/10/16 612047-24A SB18-15 12/10/16 612047-25A SB18-20 12/10/16 612047-26A SB18-25 12/10/16 612047-27A SB18-30 12/10/16 612047-27A SB18-35 12/10/16 612047-29A SB18-40 12/10/16 612047-29A SB18-40 12/10/16 612047-30A SB110-5 12/10/16 612047-31A SB110-10 12/10/16 612047-33A SB110-20 12/10/16 612047-33A SB110-25 12/10/16 612047-35A SB110-30 12/10/16 612047-35A	SB6-10		
SB7-10 12/10/16 612047-16A SB7-15 12/10/16 612047-17A SB7-20 12/10/16 612047-18A SB8-4 12/10/16 612047-19A SB8-8 12/10/16 612047-20A SB9-4 12/10/16 612047-21A SB9-8 12/10/16 612047-22A SB18-5 12/10/16 612047-23A SB18-10 12/10/16 612047-24A SB18-15 12/10/16 612047-24A SB18-20 12/10/16 612047-25A SB18-25 12/10/16 612047-27A SB18-30 12/10/16 612047-27A SB18-35 12/10/16 612047-29A SB18-40 12/10/16 612047-30A SB110-5 12/10/16 612047-31A SB110-10 12/10/16 612047-32A SB110-15 12/10/16 612047-33A SB110-20 12/10/16 612047-34A SB110-25 12/10/16 612047-35A SB110-30 12/10/16 612047-35A	SB6-15	12/10/16	612047-14A
SB7-15 12/10/16 612047-17A SB7-20 12/10/16 612047-18A SB8-4 12/10/16 612047-19A SB8-8 12/10/16 612047-20A SB9-4 12/10/16 612047-21A SB9-8 12/10/16 612047-22A SB18-5 12/10/16 612047-23A SB18-10 12/10/16 612047-24A SB18-15 12/10/16 612047-24A SB18-20 12/10/16 612047-26A SB18-25 12/10/16 612047-27A SB18-30 12/10/16 612047-27A SB18-35 12/10/16 612047-29A SB18-40 12/10/16 612047-30A SB110-5 12/10/16 612047-31A SB110-10 12/10/16 612047-32A SB110-15 12/10/16 612047-33A SB110-20 12/10/16 612047-34A SB110-25 12/10/16 612047-35A SB110-35 12/10/16 612047-36A SB110-35 12/10/16 612047-36A	SB6-20	12/10/16	612047-15A
SB7-20 12/10/16 612047-18A SB8-4 12/10/16 612047-19A SB8-8 12/10/16 612047-20A SB9-4 12/10/16 612047-21A SB9-8 12/10/16 612047-22A SB18-5 12/10/16 612047-23A SB18-10 12/10/16 612047-24A SB18-15 12/10/16 612047-25A SB18-20 12/10/16 612047-25A SB18-25 12/10/16 612047-27A SB18-30 12/10/16 612047-27A SB18-35 12/10/16 612047-29A SB18-40 12/10/16 612047-30A SB110-5 12/10/16 612047-31A SB110-10 12/10/16 612047-32A SB110-15 12/10/16 612047-33A SB110-20 12/10/16 612047-34A SB110-35 12/10/16 612047-35A SB110-35 12/10/16 612047-36A SB110-35 12/10/16 612047-37A	SB7-10	12/10/16	612047-16A
SB8-4 12/10/16 612047-19A SB8-8 12/10/16 612047-20A SB9-4 12/10/16 612047-21A SB9-8 12/10/16 612047-22A SB18-5 12/10/16 612047-23A SB18-10 12/10/16 612047-24A SB18-15 12/10/16 612047-25A SB18-20 12/10/16 612047-26A SB18-25 12/10/16 612047-27A SB18-30 12/10/16 612047-28A SB18-35 12/10/16 612047-29A SB18-40 12/10/16 612047-30A SB110-5 12/10/16 612047-31A SB110-10 12/10/16 612047-32A SB110-15 12/10/16 612047-33A SB110-20 12/10/16 612047-35A SB110-30 12/10/16 612047-35A SB110-35 12/10/16 612047-36A SB110-35 12/10/16 612047-37A	SB7-15	12/10/16	612047-17A
SB8-8 12/10/16 612047-20A SB9-4 12/10/16 612047-21A SB9-8 12/10/16 612047-22A SB18-5 12/10/16 612047-23A SB18-10 12/10/16 612047-24A SB18-15 12/10/16 612047-25A SB18-20 12/10/16 612047-26A SB18-25 12/10/16 612047-27A SB18-30 12/10/16 612047-28A SB18-35 12/10/16 612047-29A SB18-40 12/10/16 612047-30A SB110-5 12/10/16 612047-31A SB110-10 12/10/16 612047-33A SB110-15 12/10/16 612047-33A SB110-20 12/10/16 612047-34A SB110-25 12/10/16 612047-35A SB110-30 12/10/16 612047-36A SB110-35 12/10/16 612047-37A	SB7-20	12/10/16	612047-18A
SB9-4 12/10/16 612047-21A SB9-8 12/10/16 612047-22A SB18-5 12/10/16 612047-23A SB18-10 12/10/16 612047-24A SB18-15 12/10/16 612047-25A SB18-20 12/10/16 612047-26A SB18-25 12/10/16 612047-27A SB18-30 12/10/16 612047-28A SB18-35 12/10/16 612047-29A SB18-40 12/10/16 612047-30A SB110-5 12/10/16 612047-31A SB110-10 12/10/16 612047-32A SB110-15 12/10/16 612047-33A SB110-20 12/10/16 612047-34A SB110-25 12/10/16 612047-35A SB110-30 12/10/16 612047-36A SB110-35 12/10/16 612047-37A	SB8-4		
SB9-8 12/10/16 612047-22A SB18-5 12/10/16 612047-23A SB18-10 12/10/16 612047-24A SB18-15 12/10/16 612047-25A SB18-20 12/10/16 612047-26A SB18-25 12/10/16 612047-27A SB18-30 12/10/16 612047-28A SB18-35 12/10/16 612047-29A SB18-40 12/10/16 612047-30A SB110-5 12/10/16 612047-31A SB110-10 12/10/16 612047-32A SB110-15 12/10/16 612047-33A SB110-20 12/10/16 612047-34A SB110-25 12/10/16 612047-35A SB110-30 12/10/16 612047-36A SB110-35 12/10/16 612047-37A	SB8-8	12/10/16	612047-20A
SB18-5 12/10/16 612047-23A SB18-10 12/10/16 612047-24A SB18-15 12/10/16 612047-25A SB18-20 12/10/16 612047-26A SB18-25 12/10/16 612047-27A SB18-30 12/10/16 612047-28A SB18-35 12/10/16 612047-29A SB18-40 12/10/16 612047-30A SB110-5 12/10/16 612047-31A SB110-10 12/10/16 612047-32A SB110-15 12/10/16 612047-33A SB110-20 12/10/16 612047-34A SB110-25 12/10/16 612047-35A SB110-30 12/10/16 612047-36A SB110-35 12/10/16 612047-37A	SB9-4		· · - · · · · · · · · · · · · · · · · ·
SB18-10 12/10/16 612047-24A SB18-15 12/10/16 612047-25A SB18-20 12/10/16 612047-26A SB18-25 12/10/16 612047-27A SB18-30 12/10/16 612047-28A SB18-35 12/10/16 612047-29A SB18-40 12/10/16 612047-30A SB110-5 12/10/16 612047-31A SB110-10 12/10/16 612047-32A SB110-15 12/10/16 612047-33A SB110-20 12/10/16 612047-34A SB110-25 12/10/16 612047-35A SB110-30 12/10/16 612047-36A SB110-35 12/10/16 612047-37A	SB9-8	12/10/16	612047-22A
SB18-15 12/10/16 612047-25A SB18-20 12/10/16 612047-26A SB18-25 12/10/16 612047-27A SB18-30 12/10/16 612047-28A SB18-35 12/10/16 612047-29A SB18-40 12/10/16 612047-30A SB110-5 12/10/16 612047-31A SB110-10 12/10/16 612047-32A SB110-15 12/10/16 612047-33A SB110-20 12/10/16 612047-34A SB110-25 12/10/16 612047-35A SB110-30 12/10/16 612047-36A SB110-35 12/10/16 612047-37A	SB18-5	12/10/16	612047-23A
SB18-20 12/10/16 612047-26A SB18-25 12/10/16 612047-27A SB18-30 12/10/16 612047-28A SB18-35 12/10/16 612047-29A SB18-40 12/10/16 612047-30A SB110-5 12/10/16 612047-31A SB110-10 12/10/16 612047-32A SB110-15 12/10/16 612047-33A SB110-20 12/10/16 612047-34A SB110-25 12/10/16 612047-35A SB110-30 12/10/16 612047-36A SB110-35 12/10/16 612047-37A	SB18-10	12/10/16	612047-24A
SB18-25 12/10/16 612047-27A SB18-30 12/10/16 612047-28A SB18-35 12/10/16 612047-29A SB18-40 12/10/16 612047-30A SB110-5 12/10/16 612047-31A SB110-10 12/10/16 612047-32A SB110-15 12/10/16 612047-33A SB110-20 12/10/16 612047-34A SB110-25 12/10/16 612047-35A SB110-30 12/10/16 612047-36A SB110-35 12/10/16 612047-37A	SB18-15		
SB18-30 12/10/16 612047-28A SB18-35 12/10/16 612047-29A SB18-40 12/10/16 612047-30A SB110-5 12/10/16 612047-31A SB110-10 12/10/16 612047-32A SB110-15 12/10/16 612047-33A SB110-20 12/10/16 612047-34A SB110-25 12/10/16 612047-35A SB110-30 12/10/16 612047-36A SB110-35 12/10/16 612047-37A	SB18-20	12/10/16	612047-26A
SB18-35 12/10/16 612047-29A SB18-40 12/10/16 612047-30A SB110-5 12/10/16 612047-31A SB110-10 12/10/16 612047-32A SB110-15 12/10/16 612047-33A SB110-20 12/10/16 612047-34A SB110-25 12/10/16 612047-35A SB110-30 12/10/16 612047-36A SB110-35 12/10/16 612047-37A	SB18-25	12/10/16	612047-27A
SB18-40 12/10/16 612047-30A SB110-5 12/10/16 612047-31A SB110-10 12/10/16 612047-32A SB110-15 12/10/16 612047-33A SB110-20 12/10/16 612047-34A SB110-25 12/10/16 612047-35A SB110-30 12/10/16 612047-36A SB110-35 12/10/16 612047-37A	SB18-30	12/10/16	612047-28A
SB110-5 12/10/16 612047-31A SB110-10 12/10/16 612047-32A SB110-15 12/10/16 612047-33A SB110-20 12/10/16 612047-34A SB110-25 12/10/16 612047-35A SB110-30 12/10/16 612047-36A SB110-35 12/10/16 612047-37A	SB18-35	12/10/16	612047-29A
SB110-10 12/10/16 612047-32A SB110-15 12/10/16 612047-33A SB110-20 12/10/16 612047-34A SB110-25 12/10/16 612047-35A SB110-30 12/10/16 612047-36A SB110-35 12/10/16 612047-37A	SB18-40	12/10/16	612047-30A
SB110-15 12/10/16 612047-33A SB110-20 12/10/16 612047-34A SB110-25 12/10/16 612047-35A SB110-30 12/10/16 612047-36A SB110-35 12/10/16 612047-37A	SB110-5	12/10/16	612047-31A
SB110-20 12/10/16 612047-34A SB110-25 12/10/16 612047-35A SB110-30 12/10/16 612047-36A SB110-35 12/10/16 612047-37A	SB110-10	12/10/16	612047-32A
SB110-25 12/10/16 612047-35A SB110-30 12/10/16 612047-36A SB110-35 12/10/16 612047-37A	SB110-15	12/10/16	612047-33A
SB110-30 12/10/16 612047-36A SB110-35 12/10/16 612047-37A	SB110-20	12/10/16	612047-34A
SB110-35 12/10/16 612047-37A	SB110-25	12/10/16	612047-35A
	SB110-30	12/10/16	612047-36A
SB110-40 12/10/16 612047-38A	SB110-35	12/10/16	612047-37A
	SB110-40	12/10/16	612047-38A

Reviewed and Approved:

Job No: 612047

Page 2

Client: CSC

Certificate of Analysis

Project No. 4007736

Project Site: NHHS

Report Date: 01/14/17 5231 Colfax Ave Date of Sample: 12/10/16 Date Received: 12/12/16

EPA Method: 8260B Sample Matrix: Soil **Units:** ppb or $\mu g/kg$

Client Sample ID:	SB8-4	SB8-8	SB9-4	SB9-8	SB18-5	SB18-10	SB18-15	SB18-20	SB18-25	SB18-30	Detection
Dilution Factor:	0.9	1	1	1	1	0.9	1	0.9	1	0.9	Limit
	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Bromobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Bromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Bromoform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Bromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
n-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
sec-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
tert-Butylbenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1 1
Carbon Tetrachloride Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Chloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
2-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
4-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
2-Chloroethyl vinyl ether	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Dibromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
cis-1,2 Dichloroethene	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	1 1
Trans-1,2-Dichloroethene	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1
1,2-Dichloropropane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	1
1,3-Dichloropropane 2,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,1-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Isopropylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
4-Isopropyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
n-propylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Tetrachloroethene(PCE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Toluene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	1
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	1
1,1,1-Trichloroethane	ND ND	ND ND	ND ND	ND	1						
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Trichloroethene(TCE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Total Xylenes	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2
Ethanol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	250
MTBE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
ETBE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
DIPE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
TAME	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
TBA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
MEK	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
MIBK	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	10 10
2-Hexanone	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	10
Ethyl Acetate	ND	ND ND	ND ND	ND	50						
Acetone Analysis Date:		12/14/16	12/14/16	12/14/16	12/14/16	12/14/16	12/15/16	12/15/16	12/15/16	12/15/16	30
ND: Not Detected Below (DF x Detection		12/17/10	DF: Dilution F		12/17/10	12/17/10	12/10/10	12/13/10	12/13/10	12/10/10	

Page 3

Client: CSC

Certificate of Analysis

Project No. 4007736

Project Site: NHHS

5231 Colfax Ave

Report Date: 01/14/17 Date of Sample: 12/10/16

Job No: 612047

EPA Method: 8260B Sample Matrix: Soil Units: ppb or µg/kg Date Received: 12/12/16

Client Sample ID:	CD40.05	CD10 40	CD110 F	CD110.10	CD110.15	CD110 00	CD110.05	CD440.00	CD110.05	CD110 40	Detection
Dilution Factor:	SB18-35 0.9	SB18-40 0.9	SB110-5 1	SB110-10 0.9	SB110-15 0.9	SB110-20 0.9	SB110-25	SB110-30	SB110-35 0.9	SB110-40	Limit
Dilution Factor.	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
D			ND		ND		ND		ND		
Benzene Bromohonzono	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1 1
Bromobenzene Bromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Bromoform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Bromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
n-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
sec-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
tert-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Chloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
2-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
4-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
2-Chloroethyl vinyl ether	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2 1
Dibromochloromethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2-Dibromoethane (EDB) Dibromomethane	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	1
Dibromometnane 1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
cis-1,2 Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,3-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
2,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,1-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Isopropylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
4-Isopropyltoluene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1 5
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
n-propylbenzene Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,1,2,2-Tetrachioroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Tetrachloroethene(PCE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Trichloroethene(TCE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Total Xylenes	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2
Ethanol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	250
MTBE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
ETBE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
DIPE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
TAME	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	1 20
TBA MEK	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	20 10
na 🛏 🗷	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	10
		שוו	שואו								10
MIBK			ND	ND	ND	NII)	IXII)	IXII)		IXII 1	
MIBK 2-Hexanone	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
MIBK			ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND	1 50

5231 Colfax Ave

LA, CA

Certificate of Analysis

Page 4

Client: CSC
Project Site: NHHS

EPA Method: 8015M

units: mg/kg or ppm

Job No: 612047 Report Date: 01/14/17 Date of Sample: 12/10/16

Date Received: 12/12/16
Sample Matrix: Soil

									Jampio I	Matrix: Oor	
		Gas Range			Diesel Rang	je		Oil Range			
Sample	ID UNITS	(C4-C12)	DF	DLR	(C13-C22)	DF	DLR	(C23-36)	DF	DLR	
SB2-10	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB3-10		ND	1	0.20	ND	1	5.0	ND	1	10	
SB4-10		ND	1	0.20	ND	1	5.0	ND	1	10	
SB5-10	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB6-10	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB7-10	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB8-4	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB8-8	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB9-4	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB9-8	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB18-5	mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB18-1	0 mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB18-1	5 mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB18-2	0 mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB18-2	5 mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB18-3	0 mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB18-3	5 mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB18-4	0 mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB110-	5 mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB110-	10 mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB110-	15 mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB110-	20 mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB110-	25 mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	
SB110-	0 0	ND	1	0.20	ND	1	5.0	ND	1	10	
SB110-		ND	1	0.20	ND	1	5.0	ND	1	10	
SB110-	40 mg/kg	ND	1	0.20	ND	1	5.0	ND	1	10	

Method Blank mg/kg ND 1 0.20 ND 1 5.0 ND 1 10

Sample Date: Analysis Date:

12/10/16 12/14-15/16 12/10/16 12/13-16/16 12/10/16 12/13-16/16

Certificate of Analysis

Project No. 4007736 Project Site: NHHS

5231 Colfax Ave

Report Date: 01/14/17 Date of Sample: 12/10/16

Job No: 612047

Page 5

EPA Method: 8270C PAH SIM Date Received: 12/12/16 Sample Matrix: Soil **Units:** ppb or $\mu g/kg$

Client Sample ID:	SB18-5	SB18-10	SB18-15	SB18-20	SB18-25	SB18-30	SB18-35	SB18-40	SB110-5	Detection
Dilution Factor:	1	1	1	1	1	1	1	1	1	Limit
	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
1-Methlynaphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
2-Methlynaphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Acenaphthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Acenaphthylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Benzo(a)anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Benzo(b)fluoranthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Benzo(g,h,i)perylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Benzo(k)fluoranthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Chrysene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Dibenz(a,h)anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Fluoranthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Fluorene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Indeno(1,2,3-C,D)Pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Phenanthrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20
Pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	20

Analysis Date: 12/29/16 12/29/16 12/29/16 12/29/16 12/29/16 12/29/16 12/29/16 12/29/16 12/29/16

Client Sample ID:	SB110-10	SB110-15	SB110-20	SB110-25	SB110-30	SB110-35	SB110-40	Detection
Dilution Factor:	1	1	1	1	1	1	1	Limit
	(ppb)							
1-Methlynaphthalene	ND	20						
2-Methlynaphthalene	ND	20						
Acenaphthene	ND	20						
Acenaphthylene	ND	20						
Anthracene	ND	20						
Benzo(a)anthracene	ND	20						
Benzo(a)pyrene	ND	20						
Benzo(b)fluoranthene	ND	20						
Benzo(g,h,i)perylene	ND	20						
Benzo(k)fluoranthene	ND	20						
Chrysene	ND	20						
Dibenz(a,h)anthracene	ND	20						
Fluoranthene	ND	20						
Fluorene	ND	20						
Indeno(1,2,3-C,D)Pyrene	ND	20						
Naphthalene	ND	20						
Phenanthrene Phenanthrene	ND	20						
Pyrene	ND	20						

Analysis Date: 12/29/16 12/29/16 12/29/16 12/29/16 12/29/16 12/29/16 12/29/16

Job No: 612047

Page 6

Client: CSC Project Site: NHHS

5231 Colfax Ave

LA, CA

Job No: 61204/
Report Date: 01/14/17

Date of Sample: 12/10/16

Date Received: 12/12/16 Sample Matrix: Soil

EPA Method: 6010B Metals **Units:** ppm or mg/Kg

С	lient Sample ID:	SB18-5	SB18-10	SB18-15	SB18-20	SB18-25	SB18-30	SB18-35	SB18-40	SB110-5	Reporting
	Dilution Factor:	1	1	1	1	1	1	1	1	1	Limit
Analyte		mg/kg									
Antimony		ND	2.00								
Arsenic		ND	2.00								
Barium		97.4	131	122	161	97.4	142	284	39.5	68.2	1.00
Beryllium		ND	1.00								
Cadmium		ND	1.00								
Chromium		11.7	22.7	13.7	26.8	39.6	18.2	20.7	6.35	9.46	1.00
Cobalt		8.91	12.1	10.1	11.9	8.98	13.2	18.4	5.02	6.77	2.00
Copper		14.8	22.6	17.1	27.3	26.9	24.5	37.5	8.00	10.1	2.00
Lead		ND	ND	ND	2.23	ND	ND	3.08	ND	ND	2.00
Molybdenum		ND	2.00								
Nickel		8.34	15.3	10.8	16.8	15.9	12.9	16.6	4.72	7.05	2.00
Selenium		ND	2.00								
Silver		ND	1.00								
Thallium		ND	2.00								
Vanadium		25.8	39.4	31.8	39.9	28.4	34.9	43.1	17.0	26.2	2.00
Zinc		34.3	50.1	39.2	75.9	170	50.2	60.9	16.0	25.5	5.00
	Analysis Date:	1/14/17	1/14/17	1/14/17	1/14/17	1/14/17	1/14/17	1/14/17	1/14/17	1/14/17	

EPA Method: 7470A Mercury **Units:** ppm or mg/Kg

	Client Sample ID:	SB18-5	SB18-10	SB18-15	SB18-20	SB18-25	SB18-30	SB18-35	SB18-40	SB110-5	Reporting
	Dilution Factor:	1	1	1	1	1	1	1	1	1	Limit
Analyte		mg/kg									
Mercury		ND	0.05								
	Analysis Date:	1/14/17	1/14/17	1/14/17	1/14/17	1/14/17	1/14/17	1/14/17	1/14/17	1/14/17	

ND: Not Detected Below (DF x Detection Limit)

Page 7

Client: CSC
Project Site: NHHS

5231 Colfax Ave

LA, CA

Job No: 612047 Report Date: 01/14/17

Date of Sample: 12/10/16
Date Received: 12/12/16

Sample Matrix: Soil

EPA Method: 6010B Metals **Units:** ppm or mg/Kg

	Client Sample ID:	SB110-10	SB110-15	SB110-20	SB110-25	SB110-30	SB110-35	SB110-40	Reporting
	Dilution Factor:	1	1	1	1	1	1	1	Limit
Analyte		mg/kg							
Antimony		ND	2.00						
Arsenic		ND	2.00						
Barium		162	160	152	112	249	180	62.2	1.00
Beryllium		ND	1.00						
Cadmium		ND	1.00						
Chromium		22.5	19.2	18.6	16.7	23.4	21.4	9.59	1.00
Cobalt		14.1	13.4	12.4	9.82	18.3	15.6	7.18	2.00
Copper		26.6	23.5	21.6	15.4	32.5	26.3	10.3	2.00
Lead		3.71	3.27	3.27	ND	ND	2.51	ND	2.00
Molybdenum		ND	2.00						
Nickel		18.3	17.6	14.8	11.1	18.2	15.4	7.81	2.00
Selenium		ND	2.00						
Silver		ND	1.00						
Thallium		ND	2.00						
Vanadium		47.1	44.3	41.4	35.3	44.3	42.1	20.5	2.00
Zinc		61.7	57.4	47.5	37.5	62.4	55.9	21.6	5.00
	Analysis Date:	1/14/17	1/14/17	1/14/17	1/14/17	1/14/17	1/14/17	1/14/17	

EPA Method: 7470A Mercury **Units:** ppm or mg/Kg

	Client Sample ID:	SB110-10	SB110-15	SB110-20	SB110-25	SB110-30	SB110-35	SB110-40	Reporting
	Dilution Factor:	1	1	1	1	1	1	1	Limit
Analyte		mg/kg							
Mercury		ND	0.05						
	Analysis Date:	1/14/17	1/14/17	1/14/17	1/14/17	1/14/17	1/14/17	1/14/17	

ND: Not Detected Below (DF x Detection Limit)

Job No: 612015

Certificate of Analysis

Page 8

QC Analysis Date: 12/14/16

QC Lab ID: 612047-20A

Units: ppb

QUALITY CONTROL DATA

EPA METHOD: 8260B(VOC's)

ANALYTE	BLANK RESULT	SPIKE CONC.	MS % REC	MSD % REC	% RPD	% RPD ACCEPT LIMITS	% REC ACCEPT LIMITS
1,1-Dichloroethene	ND	25	100.6	100.5	0.1%	30	70-130
Benzene	ND	25	104.3	104.8	0.5%	30	70-130
Trichloroethylene	ND	25	106.0	109.6	3.3%	30	70-130
Toluene	ND	25	109.8	109.0	0.7%	30	70-130
Chlorobenzene	ND	25	111.5	111.0	0.4%	30	70-130

QC Analysis Date: 12/14/16

QC Lab ID: 612047-19A

Units: ppm

QUALITY CONTROL DATA

EPA METHOD: 8015M (TPH Gas Range Organics)

			MS	MSD		% RPD ACCEPT	% REC
ANALYTE	BLANK RESULT	SPIKE CONC.	% REC	% REC	% RPD	LIMITS	LIMITS
GRO (TPH)	ND	0.5	88.0	99.6	12.4%	30	70-130

QC Analysis Date: 12/13/16

QC Lab ID: 612015-1A Units: ppm

QUALITY CONTROL DATA

EPA METHOD: 8015M (TPH Gas Range Organics)

			MS	MSD		ACCEPT	ACCEPT
ANALYTE	BLANK RESULT	SPIKE CONC.	% REC	% REC	% RPD	LIMITS	LIMITS
DRO (TPH)	ND	0.5	107.0	124.0	14.7%	30	70-130

Job No: 612047

Certificate of Analysis

Page 9

QC Analysis Date: 01/14/17

QC Lab ID: 612060-1A Units: ppm

QUALITY CONTROL DATA (MS/MSD)

EPA METHOD: 6010B

			MO	мор		% RPD	% REC
ANALYTE	BLANK RESULT	SPIKE CONC.	MS % REC	MSD % REC	% RPD	ACCEPT LIMITS	ACCEPT LIMITS
Antimony	ND	1.00	125.0	127.0	1.6%	30	70-130
Arsenic	ND	1.00	119.0	124.0	4.1%	30	70-130
Barium	ND	1.00	121.0	122.0	0.8%	30	70-130
Beryllium	ND	1.00	123.0	125.0	1.6%	30	70-130
Cadmium	ND	1.00	125.0	123.0	1.6%	30	70-130
Chromium	ND	1.00	128.0	121.0	5.6%	30	70-130
Cobalt	ND	1.00	119.0	122.0	2.5%	30	70-130
Copper	ND	1.00	121.0	123.0	1.6%	30	70-130
Lead	ND	1.00	125.0	119.0	4.9%	30	70-130
Molybdenum	ND	1.00	129.0	123.0	4.8%	30	70-130
Nickel	ND	1.00	123.0	125.0	1.6%	30	70-130
Selenium	ND	1.00	124.0	123.0	0.8%	30	70-130
Silver	ND	1.00	115.0	123.0	6.7%	30	70-130
Thallium	ND	1.00	116.0	115.0	0.9%	30	70-130
Vanadium	ND	1.00	126.0	120.0	4.9%	30	70-130
Zinc	ND	1.00	126.0	129.0	2.4%	30	70-130

HEMTEK Environmental Laboratories Inc.

CHAIN OF CUSTODY RECORD

13554 Larwin Circle, Santa Fe Springs, CA 90670

Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)

									100	age.			٠.	-	
CUSTOMER INFORMATI	ON The second se						AN	ALYSIS	REQUI	RED					
COMPANY NAME: CSC						IN.									
PROJECT CONTACT: AGESCHE Emi	ail:					SHORT		di A			7				
	Dr. Suite 170 Lakeurer	0				B	DS	pH, Conductivity, Turbidity	O&G		8082				
PHONE: FAX	Ć:	GRO	8015M TPH D or DRO		VOCs (8260 B) FULL	OXYGENATES (8260 B)	COD / TSS / BOD / TDS), T.	0		9				
PROJECT INFORMATION	ON	ō	ō	Z	E .	8)	0	ξ	ide	SIS	00				
PROJECT NAME NHHS	P.O. No.	D	0	H H	90	I Si	H	nct	/an	letc	19.5				
SITE ADDRESS: 5231 Colfex A.	se. LA	8015M TPH	4	CARBON CHAIN	(82	N N	TSS	pu	Ó	7 /	8				
SAMPLED BY: ACCOUNT EDF Turn A	Around Time NORM 24 hr 48 hr Other	5M	5M	RB	S	15	0	ပိ	ide	2	(A)				
DATE TIME SAMPLE ID SAMPLED SAMPLED TYPE * pH/Ti	NO OF	801	801	CA	9	ŏ	ပ္ပ	pH,	Sulfide, Cyanide, C	CAM 17 Metals	PCBS				
				×							X				
2 -15 hue C	and cape apple														
3 -23 1 1145															
4 5733 -10 10(0 5 -15 1015 6 -20 1020				×							X				
5 -15 1015															
6 -20 1020															
1 5BU-10 gue				X							×				
9 -15 950															
9 -15 950															
10 535-10 1100				X							X				
11 / -15 1105															
12 1 -20 1110															
13 586-10 1035				X							×				
10 535-10 100 11															
-20 (045)								4							
16 57-10 1210				×							X				
SIGNATURE	PRINT NAME		127130				PANY	NAME					ATE	TIA	
RELINQUISHED BY:	Aug- Garrett			C	SC							12.1	12-10	1026	0
RECEIVED BY:															
RELINQUISHED BY:															
RECEIVED FOR LABORATORY BY: 🎢	Martin			Ch	mh						9.	11-11	16	1021)

CHEMTEK Environmental Laboratories Inc.

13554 Larwin Circle, Santa Fe Springs

Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com

, CA 90670	Laboratories Inc.
	CHAIN OF CUSTODY RECORD
lop No: ファンスへ	6,207)

70	70	70	70		16	15	7 4	13	12	Ξ	10	9	CO	7	0	Ut	4	ω	N	-		S	S	PR		P	Þ	PR	C		0
RECEIVED FOR LABORATORY BY:	RELINQUISHED BY:	RECEIVED BY:	RELINQUISHED BY:	SIGN	, G	5-01195	- ' 40	52-	ું દ	-25	,	-15	_ ල	5R18-5	589-8	589-U	586-8	128-11		251-152	SAMPLE ID SA	SAMPLED BY: A C	SITE ADDRESS: 62	PROJECT NAME VH		PHONE:	ADDRESS:	PROJECT CONTACT:	COMPANY NAME:		A Dept of Health Accred
BY: MA		1	Q	SIGNATURE	1310	205	218	GE CO	800	757	750	245	240	725	920	915	300	for	1220	12-10-16 1215 40	D SAMPLED TYPE *	Cercet Line Int	SI Colfex Aux	ンナーナ	PROJECT INFORMATION	79	6	(regret)	0	CUSTOMER INFORMATION	CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)
Mith			than Crontt	PRINT NAME										W		×		2409	Struck ANY	0	pH/Time REMARKS Preserved CONT	Turn Around Time NORM 24 hr 48 hr Other		P.O. No.	ION	FAX:		Email:		TION	e Lab (ELAP No. 2629)
																					80	15 <i>N</i>					-				
C			CS		*	*	*	Κ,-	*	X	X	X	*	X	X	X	X	X				15N)		\dashv		
Chark			6		*	7	<	Х	K	×	Χ.	/ -			X		4	K			VC	OCs	(82	60 E	3) F	ULL			٦		
				COM													2				0)	(YG	ENA	ATES	(8	260	В)	SHO	RT		
				COMPANY NAME																	C	OD /	TSS	/ B	00	/ 1	DS			ANA	
				WE																								dity		ANALYSIS REQUIRED	
					*	X	X	X	X	X	X	ベ	1	×				A.	>			lfide				, 0	&G		\dashv	QUIRED	Page:
								1	/ `				, -		X	X	X	X	1000			20	R	neic	iis (00	20	30			
15-12-11			12-0	D	X	X	人	X	4	X	1	X	X	Х				X	, ~		6	PA	1	5	8	32	70	SW	n		1)
=			12-12-16	DATE														`					`								of
1020			1020	TIME																									_		W
			V																												

NOTE: Samples are discarded 30 days after results are reported unless other arrangements are made.

*Type: so-Soil GW-Ground Water WW-Waste Water AQ-Aqueous A-Air OT-Other

Distribution: WHITE with report / YELLOW to CHEMTEK / PINK to courier

CHEMTEK Environmental Laboratories Inc.

13554 Larwin Circle, Santa Fe Springs, CA 90670

Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com

CHAIN OF CUSTODY RECORD

JOB NO.: 4007735

RECEIVED	RELINQUISHED BY:	RECEIVED BY:	RELINQUISHED BY:	W	16	15	14	13	12	11	10	9	00	7	6	5	4	ω	2	- SP	SA		SAMPLED BY:	SITE ADDRESS:	PROJECT NAME		PHONE:	ADDRESS:	PROJECT	COMPANY NAME:		CA Dept
RECEIVED FOR LABORATORY BY:	SHED BY:	BY:	SHED BY:	S											oh-	28-	8.	ンだ。	-20	58110-15	SAMPLE ID			2					PROJECT CONTACT:	IY NAME:		CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)
ORY BY:)	SIGNATURE											_				_	12/0/	SAMPLE	DATE	そうらってチ	5231	SHHU		1	\	A Co	960	0	redited. (I
200			D												1245	1777	025)	1325	1200	12/0/6/25		TIME	76	いたい		PROJECT INFORMATION	me	,	ナナンジェ		CUSTOMER INFORMATION	ELAP No. 14
															_				-	40	TYPE * F		E P	Air		NFORM			1		INFORM	35) & Mo
																		7	ta	xxac)	pH/Time	Total Airona little		^		ATION	FAX:		Email:		ATION	bile Lab (
			Auso		×													Col C	3	Town	RE											ELAP No.
Murs			Ĭ	P														- K	5	olu	REMARKS	1			P.O. No.							2629)
			Cycu	PRINT NAME																n	Pres		24 hr 48 hr		o.							
			records	Æ															,	hoh	Preserved		Other									w
			,																		CONT											*
																					-			_			GR DRC		_			
0			C												~	X	×	×	人	K					CH			_				
Chunh			7												X	X		^	*	×		_					ULL					4
				CO											/						-							-	SHC	RT		
				COMPANY NAME																	С	OD	/	TSS	/ B	00) / 1	DS			A	
				NAME																	pl	Н, (Co	nd	ucti	vity	y, Tı	ırbi	dity	M.	ANALYSIS REQUIRED	
		507																			St	ılfic	de,	C	yan	ide	e, O	&G			REQUIR	Po
															X	×	X	X	1	X	С	AN	1 1	7 N	Neto	als					ED	Page:
_															X	X	*	X	X	+	P	A	4	45	> 8	37	270	,	Ju	_		W
12-12-16			12-12-16	DATE					_																					_		
			0																									_	_	_		9
1020			1020	TIME																				_			_	_		\dashv		N

Distribution: WHITE with report / YELLOW to CHEMTEK / PINK to courier

110 Pine Ave

Client: CSC

ELAP: 1435 LACSD: 10167 13554 Larwin Cir., Santa Fe Springs, CA 90670 T 562.926.9848 F 562.926.8324

Job No: 612060

Report Date: 02/09/17

Page 1

Certificate of Analysis

Project No.

Project Site: NHHS

Long Beach, CA

5231 Colfax Ave

Date Received: 12/13/16 LA, CA Number of Samples: 1

Attention: Aarron Garrett Sample Matrix: Soil

This is the Certificate of Analysis for the following samples:

LABORATORY IDENTIFICATION **SAMPLE IDENTIFICATION DATE OF SAMPLE** 12/13/16 612060-01A BS01

Certificate of Analysis

Page 2

 Client: CSC
 Job No: 612060

 Project Site: NHHS
 Report Date: 02/09/17

 Project No:
 Date of Sample: 12/13/16

 Date Received: 12/13/16

Sample Matrix: Soil

EPA Method: 6010B Metals **Units:** ppm or mg/Kg

	Client Sample ID: BS01	Detection
	Dilution Factor: 1	Limit
Analyte	(ppm)	(ppm)
Antimony	ND	2.00
Arsenic	116	2.00
Barium	220	1.00
Beryllium	ND	1.00
Cadmium	ND	1.00
Chromium	39.8	1.00
Cobalt	56.3	2.00
Copper	114	2.00
Lead	665	2.00
Molybdenum	ND	2.00
Nickel	1,040	2.00
Selenium	ND	2.00
Silver	ND	1.00
Thallium	ND	2.00
Vanadium	1,670	2.00
Zinc	213	5.00

Analysis Date: 1/4/17

EPA Method: 7471A Mercury **Units**: ppm or mg/Kg

	Client Sample ID:	BS01	Detection
	Dilution Factor:	1	Limit
Analyte		(ppm)	(ppm)
Mercurv		ND	0.05

Analysis Date: 1/4/17

ND: Not Detected Below (DF x Detection Limit)

Page 3

Client: CSC

Certificate of Analysis

Project No. **Job No:** 612060 Project Site: NHHS **Report Date:** 02/09/17

Sample Matrix: Soil Date of Sample: 12/13/16

Date Received: 12/13/16 EPA Method: 8270C Units: ppb or µg/kg

Client Sample ID:	BS01	Detection
Dilution Factor:	1	Limit
	(ppb)	(ppb)
Phenol	ND	200
bis(2-Chloroethyl)Ether	ND	200
2-Chlorophenol	ND	200
1,3-Dichlorobenzene	ND	200
1,4-Dichlorobenzene	ND	200
Benzyl alcohol	ND	200
1,2-Dichlorobenzene	ND ND	200
2-Methylphenol(O-cresol) bis(2-Chloroisopropyl)Ether	ND	200 200
n-Nitroso-di-n-Propylamine	ND	200
4-Methylphenol(P-cresol)	ND	200
Hexachloroethane	ND	200
Nitrobenzene	ND	200
Isophorone	ND	200
2-Nitrophenol	ND	200
2,4-Dimethylphenol	ND	200
bis(2-Chloroethoxy) Methane	ND	200
2,4-Dichlorophenol	ND	400
1,2,4-Trichlorobenzene	ND	200
Naphthalene 4-Chloroaniline	ND ND	200 200
Hexachlorobutadiene	ND	200
4-Chloro-3-Methylphenol	ND	200
2-Methlynaphthalene	ND	200
Hexachlorocyclopentadiene	ND	200
2,4,6-Trichlorophenol	ND	200
2,4,5-Trichlorophenol	ND	200
2-Chloronaphthalene	ND	200
2-Nitroaniline	ND	200
Dimethyl Phthalate	ND	200
Acenaphthylene	ND	200
2,6-Dinitrotoluene	ND ND	200
3-Nitroaniline Carbazole	ND ND	200 200
Benzoic Acid	4,300	800
Acenaphthene	4,300 ND	200
2,4-Dinitrophenol	ND	200
Dibenzofuran	ND	200
4-Nitrophenol	ND	200
2,4-Dinitrotoluene	ND	200
Fluorene	ND	200
Diethyl Phthalate	ND	200
4-Chlorophenyl Phenyl Ether	ND	200
4-Nitroaniline	ND	200
4,6-Dinitro-2-methylphenol	ND	400
N-Nitrosodiphenylamine	ND ND	200 200
4-Bromophenyl Phenyl Ether Hexachlorobenzene(total)	ND ND	200
Pentachlorophenol	ND	400
Phenanthrene	ND	200
Anthracene	ND	200
Di-n-Butyl Phthalate	ND	200
Fluoranthene	ND	200
Pyrene	ND	200
Butyl Benzyl Phthalate	ND	200
Benzo(a)anthracene	ND	200
3,3-Dichlorobenzidine	ND	200
Chrysene	ND ND	200
bis(2-Ethylhexyl) Phthalate Di-N-Octyl Phthalate	ND ND	200 200
Benzo(b)flouranthene	ND	200
Benzo(k)flouranthene	ND	200
Benzo(a)pyrene	ND	200
Indeno(1,2,3-C,D)Pyrene	ND	200
Dibenz(a,h)anthracene	ND	200
Benzo(g,h,i)perylene	ND	200
N-Nitrosodiemethylamine	ND	200
Pyridine	ND	200
Aniline	ND	200
Benzidine Analysis Date:	ND	200
Analysis Date:	1/6/17	

ND: Not Detected Below (DF x Detection Limit)

Certificate of Analysis

Page 4

 Client: CSC
 Job No: 702014

 Project Site: NHHS
 Report Date: 02/09/1

Project Site: NHHS Report Date: 02/09/17
5231 Colfax Ave Date of Sample: 12/13/16
Extraction Method STLC (W.E.T Method) Date Received: 12/13/16

Extraction Date 2/7/2017 Sample Matrix: Aqueous(STLC Extract)

EPA Method: 6010B Metals Units: ppm or mg/l

	Client Sample ID: BS01	Detection
	Dilution Factor: 2	Limit
Analyte	(ppm)	(ppm)
Arsenic	2.50	0.01
Lead	4.39	0.01
Nickel	35.7	0.01
	Analysis Date: 2/9/17	

Extraction Method TCLP Date Received: 12/13/16

Extraction Date 2/7/2017 Sample Matrix: Aqueous(TCLP Extract)

EPA Method: 6010B Metals **Units:** ppm or mg/l

	Client Sample ID:	BS01	Detection
	Dilution Factor:	2	Limit
Analyte		(ppm)	(ppm)
Arsenic		0.08	0.01
Lead		0.04	0.01
	Analysis Date:	2/9/17	

ND: Not Detected Below (DF x Detection Limit)

Job No: 612060

Certificate of Analysis

Page 5

QC Analysis Date: 01/04/17

QC Lab ID: 612060-1A Units: ppm

QUALITY CONTROL DATA (MS/MSD)

EPA METHOD: 6010B

			MS	MSD		% RPD	% REC
ANALYTE	BLANK RESULT	SPIKE CONC.	% REC	% REC	% RPD	ACCEPT LIMITS	ACCEPT LIMITS
Antimony	ND	1.00	114.0	124.0	8.4%	30	70-130
Arsenic	ND	1.00	113.0	124.0	9.3%	30	70-130
Barium	ND	1.00	110.0	122.0	10.3%	30	70-130
Beryllium	ND	1.00	117.1	124.0	5.7%	30	70-130
Cadmium	ND	1.00	103.0	116.0	11.9%	30	70-130
Chromium	ND	1.00	110.0	122.0	10.3%	30	70-130
Cobalt	ND	1.00	112.0	119.0	6.1%	30	70-130
Copper	ND	1.00	108.0	121.0	11.4%	30	70-130
Lead	ND	1.00	113.0	123.0	8.5%	30	70-130
Molybdenum	ND	1.00	117.0	125.0	6.6%	30	70-130
Nickel	ND	1.00	116.0	124.0	6.7%	30	70-130
Selenium	ND	1.00	112.0	122.0	8.5%	30	70-130
Silver	ND	1.00	102.0	115.0	12.0%	30	70-130
Thallium	ND	1.00	108.0	120.0	10.5%	30	70-130
Vanadium	ND	1.00	109.0	123.0	12.1%	30	70-130
Zinc	ND	1.00	115.0	126.0	9.1%	30	70-130

CHEMTEK Environmental Laboratories Inc.

CHAIN OF CUSTODY RECORD

13554 Larwin Circle, Santa Fe Springs, CA 90670

Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)

- 1 - 12 - 12 - 13 - 13 - 13 - 13 - 13 -															P	ige.		·	OI	1	
	Cl	JSTOMER	INFO	MATION									AN	ALYSIS	REQUI	RED					
COMPANY NAME:	:5c											RT					. 1				
PROJECT CONTACT: ADDRESS: 400 PHONE:	A(re	rd+	a.	Email:								SHO		dit			8270 C				
ADDRESS: 400	Wuter	0100	Or	me #176) /./()	0						B)	SO	rbi	Q.		2				
PHONE:		4 102	5 1	FAX:	Lico			GRO	1 %		Ħ	560	/ T	10,	õ		2				
	P	ROJECT	INFOR	MATION		(Charles Mills		ō	ō	Z	E	8	0	¥.	ide	S	w				
PROJECT NAME	UHHS				P.O. N	No.		O	0	[품	00	TES	/ B	Cţ	/an	etc	2				
SITE ADDRESS:								喜	声	Z	826	Z	TSS	ngr	Ó	N /	Š				
SAMPLED BY:			EDF	Turn Around	d Time NORM	24 hr 48 hr Othe	r	2W	2×	BO	SS	15	0	ပိ	de,	N 1	3				
SAMPLE ID	DATE	HIME		the state of the little of	REMARKS	Preserved	NO OF	8015M TPH	8015M TPH D or DRO	CAI	VOCs (8260 B) FULL	ŏ	COD / TSS / BOD / TDS	pH,	Sulfi	CAM 17 Metals	Svocz				
1 3501		1150				Chill	V									×	4				
2		111																			
3																					
4																					
5						,															
6																					
7																					
8																					
9																					
10																					
11																					
12																-					
13																	-				
14																					
15																					
16																					
	SIGNATURE				1	PRINT NAME						COM	PANY	AME				DA	TE	TIA	ME
RELINQUISHED BY:			_		Acro- C	Jarret+			Ċ.	5C								1213	,-14	14-	50
RECEIVED BY:																				Ì	
RELINQUISHED BY:																					
RECEIVED FOR LABORAT	ORY BY:	gn			Murti	h				Chen	٠١.							12-13-	-11	143	10

Client: CSC

ELAP: 1435 LACSD: 10167 I3554 Larwin Cir., Santa F€ Springs, CA 90670 T 562.926.9848 F 562.926.8324

Job No: 703247

Page 1

Certificate of Analysis

Project No.

110 Pine Ave Project Site: NHHS Report Date: 04/12/17
Long Beach, CA 5231 Colfax Ave Date Received: 03/26/17
LA, CA Number of Samples: 72

Attention: Aarron Garrett Sample Matrix: Soil

This is the Certificate of Analysis for the following samples:

SAMPLE IDENTIFICATION	DATE OF SAMPLE	LABORATORY IDENTIFICATION
SB041S1-0.5	03/26/17	703247-01A
SB041S1-1.5	03/26/17	703247-02A
SB041S1-2.5	03/26/17	703247-03A
SB041S2-0.5	03/26/17	703247-04A
SB041S2-1.5	03/26/17	703247-05A
SB041S2-2.5	03/26/17	703247-06A
SB041S3-0.5	03/26/17	703247-07A
SB041S3-1.5	03/26/17	703247-08A
SB041S3-2.5	03/26/17	703247-09A
SB061S1-0.5	03/26/17	703247-10A
SB061S1-1.5	03/26/17	703247-11A
SB061S1-2.5	03/26/17	703247-12A
SB061S2-0.5	03/26/17	703247-13A
SB061S2-1.5	03/26/17	703247-14A
SB061S2-2.5	03/26/17	703247-15A
SB061S3-0.5	03/26/17	703247-16A
SB061S3-1.5	03/26/17	703247-17A
SB061S3-2.5	03/26/17	703247-18 A
SB065S1-0.5	03/26/17	703247-19 A
SB065S1-1.5	03/26/17	703247-20 A
SB065S1-2.5	03/26/17	703247-21A
SB065S2-0.5	03/26/17	703247-22A
SB065S2-1.5	03/26/17	703247-23A
SB065S2-2.5	03/26/17	703247-24A
SB067S1-0.5	03/26/17	703247-25A
SB067S1-1.5	03/26/17	703247-26A
SB067S1-2.5	03/26/17	703247-27A
SB067S2-0.5	03/26/17	703247-28A
SB067S2-1.5	03/26/17	703247-29A
SB067S2-2.5	03/26/17	703247-30A
SB067S3-0.5	03/26/17	703247-31A
SB067S3-1.5	03/26/17	703247-32A
SB067S3-2.5	03/26/17	703247-33A
SB067S4-0.5	03/26/17	703247-34A
SB067S4-1.5	03/26/17	703247-34A 703247-35A
SB067S4-2.5	03/26/17	703247-36A
SB068S1-0.5	03/26/17	703247-37A
SB068S1-1.5	03/26/17	703247-38A
SB068S1-2.5	03/26/17	703247-39A
SB068S2-0.5	03/26/17	703247-40A
SB068S2-1.5	03/26/17	703247-41A
SB068S2-2.5	03/26/17	703247-42A
SB068S3-0.5	03/26/17	703247-43A
SB068S3-1.5	03/26/17	703247-44A
SB068S3-2.5	03/26/17	703247-44A 703247-45A
	03/26/17	703247-46A
SB068S4-0.5 SB068S4-1.5	03/26/17	703247-40A 703247-47A
SB068S4-2.5	03/26/17	703247-47A 703247-48A
3D00034-2.3	03/20/11	100471-TUM

Client: CSC

ELAP: 1435 LACSD: 10167 I3554 Larwin Cir., Santa F€ Springs, CA 90670 T 562.926.9848 F 562.926.8324

Page 2

Certificate of Analysis

Project No. Job No: 703247

110 Pine Ave Project Site: NHHS Report Date: 04/12/17
Long Beach, CA 5231 Colfax Ave Date Received: 03/26/17
LA, CA Number of Samples: 72

Attention: Aarron Garrett Sample Matrix: Soil

This is the Certificate of Analysis for the following samples:

SAMPLE IDENTIFICATION	DATE OF SAMPLE	LABORATORY IDENTIFICATION
SB069S1-0.5	03/26/17	703247-49A
SB069S1-1.5	03/26/17	703247-50A
SB069S1-2.5	03/26/17	703247-51A
SB094S1-0.5	03/26/17	703247-52A
SB094S1-1.5	03/26/17	703247-53A
SB094S1-2.5	03/26/17	703247-54A
SB100S1-0.5	03/26/17	703247-55A
SB100S1-0.5	03/26/17	703247-56A
SB100S1-1.5 SB100S1-2.5	03/26/17	703247-57A
SB100S1-2.5 SB100S2-0.5	03/26/17	703247-58A
SB100S2-0.5	03/26/17	703247-59A
SB100S2-1.5 SB100S2-2.5	03/26/17	703247-60A
SB10032-2.5 SB102S1-0.5	03/26/17	703247-60A 703247-61A
SB102S1-0.5	03/26/17	703247-62A
SB102S1-1.5 SB102S1-2.5	03/26/17	703247-62A 703247-63A
	03/26/17	703247-63A 703247-64A
SB102S2-0.5	03/26/17	703247-64A 703247-65A
SB102S2-1.5	03/26/17	703247-65A 703247-66A
SB102S2-2.5	03/26/17	703247-66A 703247-67A
SB102S3-0.5	**/=*/ **	
SB102S3-1.5	03/26/17	703247-68A
SB102S3-2.5	03/26/17	703247-69A
SB102S4-0.5	03/26/17	703247-70A
SB102S4-1.5	03/26/17	703247-71A
SB102S4-2.5	03/26/17	703247-72 A
l		

Certificate of Analysis

Page 3

Client: CSC Project Site: NHHS

5231 Colfax Ave

LA, CA

Job No: 703247 **Report Date:** 04/12/17 Date of Sample: 03/26/17

Date Received: 03/26/17 Sample Matrix: Soil

EPA Method: 6010B Metals Units: ppm or mg/Kg

	Client Sample ID:	Arsenic	Lead	Analysis Date	
DF	Cheff Galliple ID.	1	1	Alialysis Date	
Analyte	Detection Limit	2.00	2.00		
SB041S1-0.5	ppm	ND	2.00	3/30/2017	
SB041S1-1.5	ppm	ND		3/30/2017	
SB041S1-2.5	ppm	117		3/30/2017	
SB041S1-2.5 SB041S2-0.5	ppm	ND		3/30/2017	
SB041S2-1.5	ppm	ND		3/30/2017	
SB041S2-2.5	ppm	ND		3/30/2017	
SB041S3-0.5	ppm	ND ND		3/30/2017	
SB041S3-0.5		ND		3/30/2017	
	ppm	7.67		3/30/2017	
SB041S3-2.5	ppm	ND		3/30/2017	
SB061S1-0.5	ppm	ND		3/30/2017	
SB061S1-1.5	ppm	ND			
SB061S1-2.5	ppm	ND		3/30/2017	
SB061S2-0.5	ppm	ND		3/30/2017	
SB061S2-1.5	ppm	ND		3/30/2017	
SB061S2-2.5	ppm	ND		3/30/2017	
SB061S3-0.5	ppm	ND		3/30/2017	
SB061S3-1.5	ppm	ND		3/30/2017	
SB061S3-2.5	ppm			3/30/2017	
SB065S1-0.5	ppm		ND	3/30/2017	_
B065S1-1.5	ppm		3.64	3/30/2017	_
B065S1-2.5	ppm			3/30/2017	_
SB065S2-0.5	ppm		11.1	3/30/2017	
SB065S2-1.5	ppm		8.38	3/30/2017	
SB065S2-2.5	ppm			3/30/2017	
SB067S1-0.5	ppm		12.3	3/30/2017	
SB067S1-1.5	ppm		2.95	3/30/2017	
SB067S1-2.5	ppm			3/30/2017	
SB067S2-0.5	ppm		14.6	3/30/2017	
SB067S2-1.5	ppm		51.4	3/30/2017	
SB067S2-2.5	ppm			3/30/2017	
SB067S3-0.5	ppm		17.5	3/30/2017	
SB067S3-1.5	ppm		37.9	3/30/2017	
SB067S3-2.5	ppm			3/30/2017	
SB067S4-0.5	ppm		176	3/30/2017	
SB067S4-1.5	ppm		59.5	3/30/2017	
SB067S4-2.5	ppm			3/30/2017	
SB068S1-0.5	ppm		60.3	3/30/2017	
SB068S1-1.5	ppm		ND	3/30/2017	-
SB068S1-2.5	ppm			3/30/2017	
SB068S2-0.5	ppm		ND	3/30/2017	
SB068S2-1.5	ppm		ND	3/30/2017	
SB068S2-2.5	ppm			3/30/2017	
SB068S3-0.5	ppm		ND	3/30/2017	
SB068S3-1.5	ppm		ND	3/30/2017	
SB068S3-2.5	ppm			3/30/2017	
SB068S4-0.5	ppm		ND	3/30/2017	
SB068S4-1.5	ppm		ND	3/30/2017	
	Ph		110		
SB068S4-2.5	ppm			3/30/2017	

ND: Not Detected Below (DF x Detection Limit)

Certificate of Analysis

Job No: 703247

Page 4

Client: CSC
Project Site: NHHS

Report Date: 04/12/17

5231 Colfax Ave

Date of Sample: 03/26/17 Date Received: 03/26/17

LA, CA

Sample Matrix: Soil

EPA Method: 6010B Metals **Units:** ppm or mg/Kg

	Client Sample ID:	Arsenic	Lead	Analysis Date	
DF	Chefft Sample ID.	1	1	Alialysis Date	
	Detection Limit	2.00	2.00		
SB069S1-0.5	ppm	2.00	ND	3/30/2017	
SB069S1-1.5	ppm		ND	3/30/2017	
SB069S1-2.5	ppm			3/30/2017	
SB094S1-0.5	ppm		ND	3/30/2017	
SB094S1-1.5	ppm		ND	3/30/2017	
SB094S1-2.5	ppm		ND	4/4/2017	
SB100S1-0.5	ppm		7.77	3/30/2017	
SB100S1-1.5	ppm		ND	3/30/2017	
SB100S1-2.5	ppm			3/30/2017	
SB100S2-0.5	ppm		ND	3/30/2017	
SB100S2-1.5	ppm		54.7	3/30/2017	
SB100S2-2.5	ppm			3/30/2017	
SB102S1-0.5	ppm	57.1		3/30/2017	
SB102S1-1.5	ppm	ND		3/30/2017	
SB102S1-2.5	ppm			3/30/2017	
SB102S2-0.5	ppm	109		3/30/2017	
SB102S2-1.5	ppm	4.92		3/30/2017	
SB102S2-2.5	ppm			3/30/2017	
SB102S3-0.5	ppm	ND		3/30/2017	
SB102S3-1.5	ppm	ND		3/30/2017	
SB102S3-2.5	ppm			3/30/2017	
SB102S4-0.5	ppm	26.2		3/30/2017	
SB102S4-1.5	ppm	111		3/30/2017	
SB102S4-2.5	ppm			3/30/2017	
0040004.0.5		ND		4/40/0047	
SB102S4-2.5	ppm	ND ND		4/12/2017 4/12/2017	
SB043S3-0.5 SB043S3-1.5	ppm	ND		4/12/2017	
SB043S3-2.5	ppm ppm	8.61		4/12/2017	
SB068S1-0.5	ppm	0.01	11.2	4/12/2017	
SB068S1-1.5	ppm		39.3	4/12/2017	
SB100S2-0.5	ppm		ND	4/12/2017	
SB100S2-1.5	ppm		67.1	4/12/2017	
SB102S3-0.5	ppm	ND	07.1	4/12/2017	
SB102S3-1.5	ppm	ND		4/12/2017	
0210200 110	PP***				

ND: Not Detected Below (DF x Detection Limit)

ELAP: 1435 LACSD: 10167 13554 Larwin Cir., Santa Fe Springs, CA 90670 T 562.926.9848 F 562.926.8324

Certificate of Analysis

Project No. 4007736

Client: CSC 4010 Watson Plaza Dr

Lakewood, CA

Project Site: NHHS 5231 Colfax Ave

LA, CA

Report Date: 05/10/17 Date Received: 05/01/17

Job No: 705001

Page 1

Number of Samples: 17 Sample Matrix: Soil

Attention: Aarron Garrett

This is the Certificate of Analysis for the following samples:

SAMPLE IDENTIFICATION	DATE OF SAMPLE	LABORATORY IDENTIFICATION
SB041S1-3	04/29/17	705001-01A
SB041S1-4	04/29/17	705001-02A
SB041S1-5	04/29/17	705001-03A
SB102S5-0.5	04/29/17	705001-04A
SB102S5-0.5 DUP	04/29/17	705001-05A
SB102S5-1.5	04/29/17	705001-06A
SB102S5-2.5	04/29/17	705001-07A
SB102S6-0.5	04/29/17	705001-08A
SB102S6-1.5	04/29/17	705001-09A
SB102S6-2.5	04/29/17	705001-10A
SB102S7-0.5	04/29/17	705001-11A
SB102S7-1.5	04/29/17	705001-12A
SB102S7-2.5	04/29/17	705001-13A
SB102S8-0.5	04/29/17	705001-14A
SB102S8-0.5 DUP	04/29/17	705001-15A
SB102S8-1.5	04/29/17	705001-16A
SB102S8-2.5	04/29/17	705001-17A

Reviewed and Approved:

Murlin

For Michael C.C. Lu **Laboratory Director**

Larwin Cir., Santa F∈ Springs, CA 90670 T 562.926.9848 F 562.926.8324

Page 5

Certificate of Analysis

Job No: 705001

Client: CSC
Project Site: NHHS

Report Date: 05/10/17
Date of Sample: 04/29/17
Date Received: 05/01/17

5231 Colfax Ave LA, CA

Sample Matrix: Soil

EPA Method: 6010B Metals **Units**: ppm or mg/Kg

EPA Method:	90 10B IVI	etais	Units:	ppm or mg/Kg	
		Client Sample ID:	Arsenic	Analysis Date	
	DF		1	,	
Analyte		Detection Limit	2.00		
SB041S1-3	1	ppm	ND	5/1/2017	
SB102S5-0.5	1	ppm	ND	5/1/2017	
SB102S5-0.5 DUP	1	ppm	ND	5/1/2017	
SB102S5-1.5	 1		ND ND	5/1/2017	
SB102S6-0.5	1	ppm ppm	ND ND	5/1/2017	
SB102S6-1.5	1		ND ND	5/1/2017	
3610230-1.3		ppm	ND	3/1/2017	

ND: Not Detected Below (DF x Detection Limit)

Certificate of Analysis

Page 3

QC Analysis Date: 05/01/17	Job No:	705001
QC Lab ID: 705001-1A		
Units: ppm		
	QUALITY CONTROL DATA (MS/MSD)	
	EPA METHOD: 6010B	

			MS	MSD		% RPD ACCEPT	% REC ACCEPT
ANALYTE	BLANK RESULT	SPIKE CONC.	% REC	% REC	% RPD	LIMITS	LIMITS
Arsenic	ND	1.00	108.0	104.0	3.8%	30	70-130

Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com

JOB NO .: 400773 C

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)

ECEIVED FOR LABORATORY BY:	ELINQUISHED BY:	ECEIVED BY:	ELINQUISHED BY:	SIGNATURE	5540258-25	-115	18 050 20-050 BIL	25810257-25 804		5B10257-05 800	581024-215 755	150 X-15 750	5B10256-015 745	5810755-255 738	-1:5	45510255-0-5501 730	,	2	5204121-3 4241 505 2	D SAMPLED TYPE *	DATE TIME	STANDED BY: 6731 COLCA ACC	PROJECT NAME JOIL HOLLY WAR	PROJECT INFORMATION		ADDRESS: UOIO (Jakson Plan	PROJECT CONTACT: 4/ 52517++	COMPANY NAME: CSC	CUSTOMER INFORMATION	
Men			Awar Cossett	PRINT NAME			2 张									2			1	pH/Time REMARKS Preserved CONT	Turn Around Time NORM 24 hr 48 hr Other		14:5 P.O. No.	ATION		Day Lakewas	Email:		AATION	
Chui			5%	COMPANY NAME		***						^	*		^	*			*	80 CA VC OX CC pH Sull	RB CS (YG)	7 TSS ond e, C	CHA 60 B ATES 6 / B ucti	OD vity	ULL 260) / T	B) S	SHO	-	ANALYSIS REQUIRED	ruge.
5-1-17			1-1-1	DATE			A		AG	The state of the s									<u>'</u>	,										0
1000				TIME																								_		_

Distribution: WHITE with report / YELLOW to CHEMTEK / PINK to courier

110 Pine Ave

Long Beach, CA

Client: CSC

Attention: Aarron Garrett

ELAP: 1435 LACSD: 10167 I3554 Larwin Cir., Santa F€ Springs, CA 90670 T 562.926.9848 F 562.926.8324

Page 1

Certificate of Analysis

Project No.

Project Site: NHHS 5231 Colfax Ave

LA, CA

Report Date: 08/07/17
Date Received: 07/20/17

Job No: 707074

Number of Samples: 36
Sample Matrix: Soil

This is the Certificate of Analysis for the following samples:

SAMPLE IDENTIFICATION	DATE OF SAMPLE	LABORATORY IDENTIFICATION
SB111-0.5	07/20/17	707074-01A
SB111-1.5	07/20/17	707074-02A
SB111-2.5	07/20/17	707074-03A
SB112-0.5	07/20/17	707074-04A
SB112-1.5	07/20/17	707074-05A
SB112-2.5	07/20/17	707074-06A
SB113-0.5	07/20/17	707074-07A
SB113-1.5	07/20/17	707074-08A
SB113-2.5	07/20/17	707074-09A
SB114-0.5	07/20/17	707074-10A
SB114-0.5 DUP	07/20/17	707074-11A
SB114-1.5	07/20/17	707074-12A
SB114-2.5	07/20/17	707074-13A
SB115-0.5	07/20/17	707074-14A
SB115-1.5	07/20/17	707074-15 A
SB115-2.5	07/20/17	707074-16A
SB116-0.5	07/20/17	707074-17A
SB116-1.5	07/20/17	707074-18 A
SB116-2.5	07/20/17	707074-19 A
SB117-0.5	07/20/17	707074-20A
SB117-0.5 DUP	07/20/17	707074-21A
SB117-1.5	07/20/17	707074-22A
SB117-2.5	07/20/17	707074-23A
SB118-0.5	07/20/17	707074-24A
SB118-1.5	07/20/17	707074-25A
SB118-2.5	07/20/17	707074-26A
SB119-0.5	07/20/17	707074-27A
SB119-1.5	07/20/17	707074-28A
SB119-2.5	07/20/17	707074-29A
SB072S1-0.5	07/20/17	707074-30A
SB072S2-0.5	07/20/17	707074-31A
SB072S2-0.5 DUP	07/20/17	707074-32A
SB109S1-0.5	07/20/17	707074-33A
SB109S1-1.5	07/20/17	707074-34A
SB109S1-2.5	07/20/17	707074-35A
SB109S1-3.5	07/20/17	707074-36A

Certificate of Analysis

Page 2

Client: CSC
Project Site: NHHS

5231 Colfax Ave

LA, CA

Job No: 707074

Report Date: 08/07/17

Date of Sample: 07/20/17

Date Received: 07/20/17

Sample Matrix: Soil

EPA Method: 6010B Metals **Units:** ppm or mg/Kg

	Client Sample ID:	Arsenic	Lead	Analysis Date
DF	Olletti Sample ID.	1	1	Allalysis Date
Analyte	Detection Limit	2.00	2.00	
SB111-0.5	ppm	2.19	ND	8/1/2017
SB111-1.5	ppm	ND	ND	8/1/2017
SB111-2.5	ppm	ND	ND	8/1/2017
SB112-0.5	ppm	ND	ND	8/1/2017
SB112-1.5	ppm	ND	ND	8/1/2017
SB112-2.5	ppm	ND	ND	8/1/2017
SB113-0.5	ppm	ND	11.9	8/1/2017
SB113-1.5	ppm	ND	ND	8/1/2017
SB113-2.5	ppm	ND	ND	8/1/2017
SB114-0.5	ppm	ND	286	8/1/2017
SB114-0.5 DUP	ppm	6.23	285	8/1/2017
SB114-1.5	ppm	ND	ND	8/1/2017
SB114-2.5	ppm	ND	3.10	8/1/2017
SB115-0.5	ppm	4.74	357	8/1/2017
SB115-1.5	ppm	ND	10.5	8/1/2017
SB115-2.5	ppm	ND	55.0	8/1/2017
SB116-0.5	ppm	ND	59.3	8/1/2017
SB116-1.5	ppm	ND	26.9	8/1/2017
SB116-2.5	ppm	ND	53.1	8/1/2017
SB117-0.5	ppm	7.40	27.0	8/1/2017
SB117-0.5 DUP	ppm	10.6	27.0	8/1/2017
SB117-1.5	ppm	ND	ND	8/1/2017
SB117-2.5	ppm	ND	ND	8/1/2017
SB118-0.5	ppm	2.96	16.7	8/1/2017
SB118-1.5	ppm	ND	2.50	8/1/2017
SB118-2.5	ppm	ND	5.71	8/1/2017
SB119-0.5	ppm	2.19	18.0	8/1/2017
SB119-1.5	ppm	19.3	27.6	8/1/2017
SB119-2.5	ppm	ND	ND	8/1/2017
SB072S1-0.5	ppm		16.3	8/1/2017
SB072S2-0.5	ppm		14.5	8/1/2017
SB072S2-0.5 DUP	ppm		14.3	8/1/2017
SB109S1-0.5	ppm		19.7	8/1/2017
SB109S1-1.5	ppm		10.7	8/1/2017
SB109S1-2.5	ppm		5.51	8/1/2017
SB109S1-3.5	ppm		ND	8/1/2017

ND: Not Detected Below (DF x Detection Limit)

Page 3

Certificate of Analysis

QC Analysis Date: 08/01/17 **Job No:** 707074

QC Lab ID: 707125-1A Units: ppm

QUALITY CONTROL DATA (MS/MSD)

EPA METHOD: 6010B

ANALYTE	BLANK RESULT	SPIKE CONC.	MS % REC	MSD % REC	% RPD	% RPD ACCEPT LIMITS	% REC ACCEPT LIMITS
Arsenic	ND	1.00	113.0	116.0	2.6%	30	70-130
Lead	ND	1.00	106.0	105.0	0.9%	30	70-130

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attention: Aaron Garrett

Number of Pages 42

Date Received 11/08/2016 Date Reported 11/21/2016

Job Number	Order Date	Client
85198	11/08/2016	CSC-LB

Enclosed please find results of analyses of 32 soil samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By:

Approved By: C. Raymana

Cyrus Razmara, Ph.D. Laboratory Director

	١
	i
\	
\	
- 1	
- X;	
X	
_ =	Ü
w	١
ä	١
⋰⋶	
ె	
Ě	
0	
_ >	
×	
ᆢ	
Q	
75	
~~	
ம	
Ē	
- 5	
_ =	
9	
.=	
_ ≥	
_5	
ш	
•	
ш	,
_	/
	1
<	
Ш	
I	
1 3	
U	

13554 Larwin Circle, Santa Fe Springs, CA 90670

iel. (562) 926-9848 FAX (562) 926-6324 - Email: ChemtekLabs@hotmail.com

CA Dept of Health Accidated. (ELAP No. 1435) & Mobile Leb (ELAP No. 2629)

CHAIN OF CUSTODY RECORD CLETA LO Chris

300 NO.: 85/98

jo

Page:

to CSC 1700100 Chertex

2700 0851 1930 TIME 19:30 11/8-11 7/18/11 11-8-16 DATE 11/2/11 208 EUA CAM 17 Metals ANALYSIS REQUIRED Sulfide, Cyanide, O&G pH, Conductivity, Turbidity COMPANY NAME COD \ 122 \ BOD \ 1D2 OXYGENATES (8260 B) SHORT C **NOC**2 (8590 B) ENTE *** METC CARBON CHAIN 8015M TPH D or DRO 8015M TPH G or GRO NO. OF なって NORM 24 hr 48 hr Other Preserved PRINT NAME P.O. No. (any sps p REMARKS Trad Haso. Os Manes 85198.02 85193.0) 85198-16 82198.04 35198.03 85/98.06 85198-12 85199-14 82198-13 85198.08 85/98.05 85198-OF 01.8618 85/48-15 85198.9 35198.11 **Turn Around Time CUSTOMER INFORMATION** PROJECT INFORMATION Email: FAX: SAMPLED SAMPLED TYPE * TIME DI WAY LD A Gorret RECEIVED FOR LABORATORY BY: 91-5-11 SIGNATURE 91-9-11 DATE 5 57-0.5 50-05 PROJECT CONTACT: 49-0.5 10-49 10-49 RELINQUISHED BY: X 56-0.5 500-55005 8 SOUZE . 0,5 40.0.5 55-0.5 2 50027-0.5 S00- KZ 005 5,0-2,7 GAS 2 2 | 500 22 - 0.5 S00-22-05 S.0-1-002 0 COMPANY NAME: 500-12005 RELINQUISHED BY: SAMPLEID PROJECT NAME SITE ADDRESS: SAMPLED BY: RECEIVED BY: ADDRESS: PHONE 13

NOTE: Samples are discarded 30 days after results are reported unless other arrangements are made.

Distribution: WHITE with report / YELLOW to CHEMTEK / PINK to courier *Type: so-Soil GW-Ground Water WW-Waste Water AQ-Aqueous A-Air OT-Other

CHEMTEK Environmental Laboratories Inc.,

13554 Larwin Circle, Santa Ee Springs, CA 90679

Email: Chemteklabs@hotmail.com Tel. (562) 926-9848 FAX (562) 926-6324

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2429)

2	:02-200
SCHAIN OF CUSTODY RECORD	

₹

Page:

M30 1930 2322 TIME 200 1/28/16 9/18/1 37-8-N DATE N </> /> / N Distribution: WHITE with report / YELLOW to CHEMTEK / PINK to courier VA H1202 CAM 17 Metals ANALYSIS REQUIRED Sulfide, Cyanide, O&G COMPANY NAME pH, Conductivity, Turbidity COD \ 122 \ BOD \ 1D2 OXYGENATES (8260 B) SHORT **NOC? (8590 B) ENFF** ACT CARBON CHAIN 8015M TPH D or DRO 8015M TPH G or GRO NO. OF CONT Lande NORM 24 hr 48 hr Other Preserved PRINT NAME APPLY SANIAN P.O. No. Jana18 REMARKS 85193.32 85198-17 85198.29 87193.13 85193-19 35198.22 85193.23 85198.23 85198.30 85193.70 85/18.26 85/48-31 12.26158 85/98.24 E5(98.73 851932 **Turn Around Time CUSTOMER INFORMATION** SAMPLED SAMPLED TYPE * DH/Time Email: PROJECT INFORMATION FAX: 2 Jarg15# SIGNATURE 11/8/11 DATE RECEIVED FOR LABORATORY BY: RELINQUISHED BY: + Spec 4 -0.5 40-0-5 2.0-17 5.0-11 5000 67-0.5 7-0.5 71-0,5 72-0.5 66-0.5 5.0-69 75-0.5 76.0.5 65-03 73.05 PROJECT CONTACT COMPANY NAME: RECEIVED BY: , RELINQUISHED BY: SAMPLE ID PROJECT NAME SITE ADDRESS: SAMPLED BY: ADDRESS: PHONE

*Type: so-Soil GW-Ground Water WW-Waste Water AQ-Aqueous A-Air OI-Other

NOTE: Samples are discarded 30 days after results are reported unless other arrangements are made

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attention: Aaron Garrett Project ID: None

Date Received 11/08/2016
Date Reported 11/21/2016

Job Number	Order Date	Client
85198	11/08/2016	CSC-LB

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 32 samples with the following specification on 11/08/2016.

Lab ID	Sample ID	Sample Date	Matrix	Quantity Of Containers
85198.01	SB021-0.5	11/05/2016	Soil	1
85198.02	SB022-0.5	11/05/2016	Soil	1
85198.03	SB023-0.5	11/05/2016	Soil	1
85198.04	SB024-0.5	11/05/2016	Soil	1
85198.05	SB025-0.5	11/05/2016	Soil	1
85198.06	SB026-0.5	11/06/2016	Soil	1
85198.07	SB027-0.5	11/06/2016	Soil	1
85198.08	SB028-0.5	11/06/2016	Soil	1
85198.09	SB039-0.5	11/06/2016	Soil	1
85198.10	SB040-0.5	11/06/2016	Soil	1
85198.11	SB049-0.5	11/06/2016	Soil	1
85198.12	SB050-0.5	11/06/2016	Soil	1
85198.13	SB055-0.5	11/06/2016	Soil	1
85198.14	SB056-0.5	11/06/2016	Soil	1
85198.15	SB057-0.5	11/06/2016	Soil	1
85198.16	SB062-0.5	11/06/2016	Soil	1
85198.17	SB064-0.5	11/06/2016	Soil	1
85198.18	SB065-0.5	11/06/2016	Soil	1
85198.19	SB066-0.5	11/06/2016	Soil	1
85198.20	SB067-0.5	11/06/2016	Soil	1
85198.21	SB068-0.5	11/06/2016	Soil	1
85198.22	SB069-0.5	11/06/2016	Soil	1
85198.23	SB071-0.5	11/06/2016	Soil	1
85198.24	SB072-0.5	11/06/2016	Soil	1

Continued

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 B
Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attention: Aaron Garrett Project ID: None

Date Received 11/08/2016
Date Reported 11/21/2016

Job Number	Order Date	Client
85198	11/08/2016	CSC-LB

CERTIFICATE OF ANALYSIS CASE NARRATIVE

85198.25	SB073-0.5	11/06/2016	Soil	1
85198.26	SB074-0.5	11/06/2016	Soil	1
85198.27	SB075-0.5	11/06/2016	Soil	1
85198.28	SB076-0.5	11/06/2016	Soil	1
85198.29	SB077-0.5	11/06/2016	Soil	1
85198.30	SB079-0.5	11/06/2016	Soil	1
85198.31	SB080-0.5	11/06/2016	Soil	1
85198.32	SB081-0.5	11/06/2016	Soil	1

Method ^ Submethod	Req Date	Priority	TAT	Units
(8081A)	11/15/2016	2	Normal	ug/Kg

The samples were analyzed as specified on the enclosed chain of custody. No analytical non-conformances were encountered.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

		C. Raymana
Checked By:	Approved By:	0

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett

Page: 2

AETL Job Number	Submitted	Client
85198	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111116EB2

Our Lab I.D.			Method Blank	85198.01		
Client Sample I.D.				SB021-0.5		
Date Sampled				11/05/2016		
Date Prepared			11/11/2016	11/11/2016		
Preparation Method			3550B	3550B		
Date Analyzed				11/12/2016		
Matrix			Soil	Soil		
Units			ug/Kg	ug/Kg		
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
Aldrin	1.0	2.0	ND	ND		
Chlordane (Total)	1.0	2.0	ND	ND		
Chlordane (alpha)	1.0	2.0	ND	ND		
4,4'-DDD (DDD)	1.0	2.0	ND	ND		
4,4'-DDE (DDE)	1.0	2.0	ND	ND		
4,4'-DDT (DDT)	1.0	2.0	ND	ND		
Dieldrin	1.0	2.0	ND	ND		
Endosulfan 1	1.0	2.0	ND	ND		
Endosulfan 11	1.0	2.0	ND	ND		
Endosulfan sulfate	1.0	2.0	ND	ND		
Endrin	1.0	2.0	ND	ND		
Endrin aldehyde	1.0	2.0	ND	ND		
Endrin ketone	1.0	2.0	ND	ND		
Chlordane (gamma)	1.0	2.0	ND	ND		
Heptachlor	1.0	2.0	ND	ND		
Heptachlor epoxide	1.0	2.0	ND	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	1.0	2.0	ND	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	1.0	2.0	ND	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	1.0	2.0	ND	ND		
gamma-Hexachlorocyclohexane	1.0	2.0	ND	ND		
(Gamma-BHC, Lindane)						
Methoxychlor	5.0	10.0	ND	ND		
Toxaphene	85.0	170.0	ND	ND		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 3

AETL Job Number	Submitted	Client
85198	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

Our Lab I.D.		Method Blank	85198.01		
Surrogates	%Rec.Limit	% Rec.	% Rec.		
Decachlorobiphenyl	30-150	93.6	106		
Tetrachloro-m-xylene	30-150	101	80.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: **4**

AETL Job Number	Submitted	Client		
85198	11/08/2016	CSC-LB		

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 111116EB2

		QO Daton N	0: 111116EBZ			
Our Lab I.D.			85198.02	85198.03		
Client Sample I.D.			SB022-0.5	SB023-0.5		
Date Sampled			11/05/2016			
Date Prepared			11/11/2016	11/11/2016		
Preparation Method			3550B	3550B		
Date Analyzed			11/12/2016	11/12/2016		
Matrix			Soil	Soil		
Units			ug/Kg	ug/Kg		
Dilution Factor			2	2		
Analytes	MDL	PQL	Results	Results		
Aldrin	2.0	4.0	ND	ND		
Chlordane (Total)	2.0	4.0	ND	ND		
Chlordane (alpha)	2.0	4.0	ND	ND		
4,4'-DDD (DDD)	2.0	4.0	ND	ND		
4,4'-DDE (DDE)	2.0	4.0	58.8	7.56		
4,4'-DDT (DDT)	2.0	4.0	20.2	14.7		
Dieldrin	2.0	4.0	ND	ND		
Endosulfan 1	2.0	4.0	ND	ND		
Endosulfan 11	2.0	4.0	ND	ND		
Endosulfan sulfate	2.0	4.0	ND	ND		
Endrin	2.0	4.0	16.7	8.13		
Endrin aldehyde	2.0	4.0	ND	ND		
Endrin ketone	2.0	4.0	ND	ND		
Chlordane (gamma)	2.0	4.0	ND	ND		
Heptachlor	2.0	4.0	ND	ND		
Heptachlor epoxide	2.0	4.0	ND	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	2.0	4.0	ND	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	2.0	4.0	ND	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	2.0	4.0	ND	ND		
gamma-Hexachlorocyclohexane	2.0	4.0	ND	ND		
(Gamma-BHC, Lindane)						
Methoxychlor	10	20	ND	ND		
Toxaphene	170	340	ND	ND		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 5

AETL Job Number	Submitted	Client		
85198	11/08/2016	CSC-LB		

Method: (8081A), Organochlorine Pesticides by GC

Our Lab I.D.		85198.02	85198.03		
Surrogates	%Rec.Limit	% Rec.	% Rec.		
Decachlorobiphenyl	30-150	90.4	78.4		
Tetrachloro-m-xylene	30-150	90.2	92.2		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 6

	AETL Job Number	Submitted	Client
I	85198	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 111116EB2

Our Lab I.D.			85198.04	85198.05	85198.06	85198.07	
Client Sample I.D.			SB024-0.5	SB025-0.5	SB026-0.5	SB027-0.5	
Date Sampled	Date Sampled			11/05/2016	11/06/2016	11/06/2016	
Date Prepared			11/11/2016	11/11/2016	11/11/2016	11/11/2016	
Preparation Method			3550B	3550B	3550B	3550B	
Date Analyzed			11/12/2016	11/12/2016	11/12/2016	11/12/2016	
Matrix			Soil	Soil	Soil	Soil	
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	
Dilution Factor			1	1	1	1	
Analytes	MDL	PQL	Results	Results	Results	Results	
Aldrin	1.0	2.0	ND	ND	ND	ND	
Chlordane (Total)	1.0	2.0	ND	ND	ND	ND	
Chlordane (alpha)	1.0	2.0	ND	ND	ND	ND	
4,4'-DDD (DDD)	1.0	2.0	ND	ND	ND	ND	
4,4'-DDE (DDE)	1.0	2.0	ND	ND	ND	4.51	
4,4'-DDT (DDT)	1.0	2.0	ND	ND	1.41J	7.61	
Dieldrin	1.0	2.0	ND	ND	ND	ND	
Endosulfan 1	1.0	2.0	ND	ND	ND	ND	
Endosulfan 11	1.0	2.0	ND	ND	ND	ND	
Endosulfan sulfate	1.0	2.0	ND	ND	ND	ND	
Endrin	1.0	2.0	ND	ND	ND	2.60	
Endrin aldehyde	1.0	2.0	ND	ND	ND	ND	
Endrin ketone	1.0	2.0	ND	ND	ND	ND	
Chlordane (gamma)	1.0	2.0	ND	ND	ND	ND	
Heptachlor	1.0	2.0	ND	ND	ND	ND	
Heptachlor epoxide	1.0	2.0	ND	ND	ND	ND	
alpha-Hexachlorocyclohexane (Alpha-BHC)	1.0	2.0	ND	ND	ND	ND	
beta-Hexachlorocyclohexane (Betta-BHC)	1.0	2.0	ND	ND	ND	ND	
delta-Hexachlorocyclohexane (Delta-BHC)	1.0	2.0	ND	ND	ND	ND	
gamma-Hexachlorocyclohexane	1.0	2.0	ND	ND	ND	ND	
(Gamma-BHC, Lindane)							
Methoxychlor	5.0	10.0	ND	ND	ND	ND	
Toxaphene	85.0	170.0	ND	ND	ND	ND	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 7

AETL Job Number	Submitted	Client
85198	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

Our Lab I.D.		85198.04	85198.05	85198.06	85198.07	
Surrogates	%Rec.Limit	% Rec.	% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150	88.0	82.0	80.8	80.8	
Tetrachloro-m-xylene	30-150	82.2	89.6	78.6	87.2	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 8

AETL Job Number	Submitted	Client		
85198	11/08/2016	CSC-LB		

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111116EB2

Our Lab I.D. 85198.08 Client Sample I.D. SB028-0.5 Date Sampled 11/06/2016 Date Prepared 11/11/2016 Preparation Method 3550B Date Analyzed 11/12/2016 Matrix Soil Units ug/Kg Dilution Factor 2 Analytes Results **PQL** MDL Aldrin 2.0 4.0 ND 2.0 4.0 ND Chlordane (Total) Chlordane (alpha) 2.0 4.0 ND 4,4'-DDD (DDD) 2.0 4.0 ND 4.0 4,4'-DDE (DDE) 2.0 ND 4.0 4,4'-DDT (DDT) 2.0 ND 4.0 2.0 ND Dieldrin 2.0 4.0 ND Endosulfan 1 2.0 4.0 ND Endosulfan 11 Endosulfan sulfate 2.0 4.0 ND 4.0 Endrin 2.0 ND Endrin aldehyde 2.0 4.0 ND 4.0 Endrin ketone 2.0 ND 2.0 4.0 ND Chlordane (gamma) Heptachlor 2.0 4.0 ND Heptachlor epoxide 2.0 4.0 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 2.0 4.0 ND 2.0 4.0 beta-Hexachlorocyclohexane (Betta-BHC) ND 4.0 2.0 ND delta-Hexachlorocyclohexane (Delta-BHC) 2.0 4.0 ND gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane) Methoxychlor 10 20 ND 170 340 Toxaphene ND

Comment(s):

85198.08: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 9

AETL Job Number	Submitted	Client		
85198	11/08/2016	CSC-LB		

Method: (8081A), Organochlorine Pesticides by GC

Our Lab I.D.		85198.08		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	81.0		
Tetrachloro-m-xylene	30-150	87.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 10

	AETL	Job	Number	Submit	ted	Client
Ī		851	98	11/08	/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 111116EB2

Our Lab I.D.			85198.09	85198.10	85198.11	85198.12	85198.13
Client Sample I.D.			SB039-0.5	SB040-0.5	SB049-0.5	SB050-0.5	SB055-0.5
Date Sampled			11/06/2016	11/06/2016	11/06/2016	11/06/2016	11/06/2016
Date Prepared			11/11/2016	11/11/2016	11/11/2016	11/11/2016	11/11/2016
Preparation Method			3550B	3550B	3550B	3550B	3550B
Date Analyzed			11/12/2016	11/12/2016	11/12/2016	11/12/2016	11/12/2016
Matrix			Soil	Soil	Soil	Soil	Soil
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Aldrin	1.0	2.0	ND	ND	ND	ND	ND
Chlordane (Total)	1.0	2.0	ND	ND	ND	ND	ND
Chlordane (alpha)	1.0	2.0	ND	ND	ND	ND	ND
4,4'-DDD (DDD)	1.0	2.0	ND	ND	2.24	ND	ND
4,4'-DDE (DDE)	1.0	2.0	ND	ND	16.8	ND	ND
4,4'-DDT (DDT)	1.0	2.0	ND	ND	16.4	ND	ND
Dieldrin	1.0	2.0	ND	ND	ND	ND	ND
Endosulfan 1	1.0	2.0	ND	ND	ND	ND	ND
Endosulfan 11	1.0	2.0	ND	ND	ND	ND	ND
Endosulfan sulfate	1.0	2.0	ND	ND	ND	ND	ND
Endrin	1.0	2.0	ND	ND	2.63	ND	ND
Endrin aldehyde	1.0	2.0	ND	ND	ND	ND	ND
Endrin ketone	1.0	2.0	ND	ND	ND	ND	ND
Chlordane (gamma)	1.0	2.0	ND	ND	ND	ND	ND
Heptachlor	1.0	2.0	ND	ND	ND	ND	ND
Heptachlor epoxide	1.0	2.0	ND	ND	ND	ND	ND
alpha-Hexachlorocyclohexane (Alpha-BHC)	1.0	2.0	ND	ND	ND	ND	ND
beta-Hexachlorocyclohexane (Betta-BHC)	1.0	2.0	ND	ND	ND	ND	ND
delta-Hexachlorocyclohexane (Delta-BHC)	1.0	2.0	ND	ND	ND	ND	ND
gamma-Hexachlorocyclohexane	1.0	2.0	ND	ND	ND	ND	ND
(Gamma-BHC, Lindane)							
Methoxychlor	5.0	10.0	ND	ND	ND	ND	ND
Toxaphene	85.0	170.0	ND	ND	ND	ND	ND

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 11

AETL Job Number	Submitted	Client
85198	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

Our Lab I.D.		85198.09	85198.10	85198.11	85198.12	85198.13
Surrogates	%Rec.Limit	% Rec.				
Decachlorobiphenyl	30-150	68.8	84.2	80.4	67.8	80.4
Tetrachloro-m-xylene	30-150	67.4	81.0	79.8	75.4	74.6

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 12

Submitted

11/08/2016

Client

CSC-LB

AETL Job Number

85198

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111116EB2

Our Lab I.D. 85198.14 Client Sample I.D. SB056-0.5 Date Sampled 11/06/2016 Date Prepared 11/11/2016 Preparation Method 3550B Date Analyzed 11/12/2016 Matrix Soil Units ug/Kg **Dilution Factor** 5 Analytes Results MDL **PQL** Aldrin 5 10 ND 5 10 ND Chlordane (Total) 5 Chlordane (alpha) 10 ND 4,4'-DDD (DDD) 5 10 ND 5 10 ND 4,4'-DDE (DDE) 5 4,4'-DDT (DDT) 10 ND 5 10 ND Dieldrin 5 10 ND Endosulfan 1 5 10 ND Endosulfan 11 Endosulfan sulfate 5 10 ND Endrin 5 10 ND Endrin aldehyde 5 10 ND Endrin ketone 5 10 ND Chlordane (gamma) 5 10 ND Heptachlor 5 10 ND Heptachlor epoxide 5 10 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 5 10 ND 5 beta-Hexachlorocyclohexane (Betta-BHC) 10 ND 5 10 ND delta-Hexachlorocyclohexane (Delta-BHC) 5 10 ND gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane) Methoxychlor 25 50 ND 425 850 Toxaphene ND

Comment(s):

85198.14: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 13

AETL Job Number 85198	Submitted	Client		
85198	11/08/2016	CSC-LB		

Our Lab I.D.		85198.14		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	43.2		
Tetrachloro-m-xylene	30-150	36.6		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 14

Submitted

11/08/2016

Client

CSC-LB

AETL Job Number

85198

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111116EB2

Our Lab I.D.			85198.15		
Client Sample I.D.			SB057-0.5		
Date Sampled	Date Sampled		11/06/2016		
Date Prepared			11/11/2016		
Preparation Method			3550B		
Date Analyzed			11/12/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			2		
Analytes	MDL	PQL	Results		
Aldrin	2.0	4.0	ND		
Chlordane (Total)	2.0	4.0	ND		
Chlordane (alpha)	2.0	4.0	ND		
4,4'-DDD (DDD)	2.0	4.0	ND		
4,4'-DDE (DDE)	2.0	4.0	ND		
4,4'-DDT (DDT)	2.0	4.0	ND		
Dieldrin	2.0	4.0	ND		
Endosulfan 1	2.0	4.0	ND		
Endosulfan 11	2.0	4.0	ND		
Endosulfan sulfate	2.0	4.0	ND		
Endrin	2.0	4.0	ND		
Endrin aldehyde	2.0	4.0	ND		
Endrin ketone	2.0	4.0	ND		
Chlordane (gamma)	2.0	4.0	ND		
Heptachlor	2.0	4.0	ND		
Heptachlor epoxide	2.0	4.0	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	2.0	4.0	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	2.0	4.0	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	2.0	4.0	ND		
gamma-Hexachlorocyclohexane	2.0	4.0	ND		
(Gamma-BHC, Lindane)					
Methoxychlor	10	20	ND		
Toxaphene	170	340	ND		

Comment(s):

85198.15: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 15

AETL Job Number 85198	Submitted	Client		
85198	11/08/2016	CSC-LB		

Our Lab I.D.		85198.15		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	75.0		
Tetrachloro-m-xylene	30-150	86.2		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 16

	AETL	Job	Number	Submitted	Client
Ī		851	98	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 111116EB2

Our Lab I.D.			85198.16	85198.17	85198.18	85198.19	
Client Sample I.D.			SB062-0.5	SB064-0.5	SB065-0.5	SB066-0.5	
Date Sampled			11/06/2016	11/06/2016	11/06/2016	11/06/2016	
Date Prepared			11/11/2016	11/11/2016	11/11/2016	11/11/2016	
Preparation Method			3550B	3550B	3550B	3550B	
Date Analyzed			11/12/2016	11/12/2016	11/12/2016	11/12/2016	
Matrix			Soil	Soil	Soil	Soil	
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	
Dilution Factor			1	1	1	1	
Analytes	MDL	PQL	Results	Results	Results	Results	
Aldrin	1.0	2.0	ND	ND	ND	ND	
Chlordane (Total)	1.0	2.0	ND	ND	10.3	4.06	
Chlordane (alpha)	1.0	2.0	ND	ND	5.13	2.18	
4,4'-DDD (DDD)	1.0	2.0	ND	ND	ND	ND	
4,4'-DDE (DDE)	1.0	2.0	7.11	ND	ND	ND	
4,4'-DDT (DDT)	1.0	2.0	6.80	ND	5.82	8.47	
Dieldrin	1.0	2.0	ND	ND	1.45J	2.10	
Endosulfan 1	1.0	2.0	ND	ND	ND	ND	
Endosulfan 11	1.0	2.0	ND	ND	ND	ND	
Endosulfan sulfate	1.0	2.0	ND	ND	ND	ND	
Endrin	1.0	2.0	3.66	ND	ND	ND	
Endrin aldehyde	1.0	2.0	ND	ND	ND	ND	
Endrin ketone	1.0	2.0	ND	ND	ND	ND	
Chlordane (gamma)	1.0	2.0	ND	ND	5.20	1.88J	
Heptachlor	1.0	2.0	ND	ND	ND	ND	
Heptachlor epoxide	1.0	2.0	ND	ND	ND	ND	
alpha-Hexachlorocyclohexane (Alpha-BHC)	1.0	2.0	ND	ND	ND	ND	
beta-Hexachlorocyclohexane (Betta-BHC)	1.0	2.0	ND	ND	ND	ND	
delta-Hexachlorocyclohexane (Delta-BHC)	1.0	2.0	ND	ND	ND	ND	
gamma-Hexachlorocyclohexane	1.0	2.0	ND	ND	ND	ND	
(Gamma-BHC, Lindane)							
Methoxychlor	5.0	10.0	ND	ND	ND	ND	
Toxaphene	85.0	170.0	ND	ND	ND	ND	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 17

AETL Job Number	Submitted	Client
85198	11/08/2016	CSC-LB

Our Lab I.D.		85198.16	85198.17	85198.18	85198.19	
Surrogates	%Rec.Limit	% Rec.	% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150	69.8	77.4	79.0	73.8	
Tetrachloro-m-xylene	30-150	89.0	105	99.4	97.2	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 18

AETL Job	Number	Submitted	Client
951	Q Q	11/08/2016	CCC_T.B

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111116EB3

Our Lab I.D.			Method Blank		
Client Sample I.D.					
Date Sampled	Date Sampled				
Date Prepared			11/11/2016		
Preparation Method			3550B		
Date Analyzed			11/14/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aldrin	1.0	2.0	ND		
Chlordane (Total)	1.0	2.0	ND		
Chlordane (alpha)	1.0	2.0	ND		
4,4'-DDD (DDD)	1.0	2.0	ND		
4,4'-DDE (DDE)	1.0	2.0	ND		
4,4'-DDT (DDT)	1.0	2.0	ND		
Dieldrin	1.0	2.0	ND		
Endosulfan 1	1.0	2.0	ND		
Endosulfan 11	1.0	2.0	ND		
Endosulfan sulfate	1.0	2.0	ND		
Endrin	1.0	2.0	ND		
Endrin aldehyde	1.0	2.0	ND		
Endrin ketone	1.0	2.0	ND		
Chlordane (gamma)	1.0	2.0	ND		
Heptachlor	1.0	2.0	ND		
Heptachlor epoxide	1.0	2.0	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	1.0	2.0	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	1.0	2.0	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	1.0	2.0	ND		
gamma-Hexachlorocyclohexane	1.0	2.0	ND		
(Gamma-BHC, Lindane)					
Methoxychlor	5.0	10.0	ND		
Toxaphene	85.0	170.0	ND		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 19

AETL Job Number	Submitted	Client
85198	11/08/2016	CSC-LB

Our Lab I.D.		Method Blank		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	71.2		
Tetrachloro-m-xylene	30-150	92.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 20

AETL Job Number	Submitted	Client
85198	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111116EB3

Our Lab I.D. 85198.20 Client Sample I.D. SB067-0.5 Date Sampled 11/06/2016 Date Prepared 11/11/2016 Preparation Method 3550B Date Analyzed 11/14/2016 Matrix Soil Units ug/Kg Dilution Factor 2 Analytes MDL Results **PQL** Aldrin 2.0 4.0 ND 2.0 4.0 94.9 Chlordane (Total) Chlordane (alpha) 2.0 4.0 39.4 4,4'-DDD (DDD) 2.0 4.0 33.3 4.0 1,140 4,4'-DDE (DDE) 2.0 4.0 22.5 4,4'-DDT (DDT) 2.0 2.0 4.0 ND Dieldrin 2.0 4.0 ND Endosulfan 1 2.0 4.0 ND Endosulfan 11 Endosulfan sulfate 2.0 4.0 ND 4.0 Endrin 2.0 ND Endrin aldehyde 2.0 4.0 ND 4.0 Endrin ketone 2.0 ND 2.0 4.0 55.5 Chlordane (gamma) Heptachlor 2.0 4.0 ND Heptachlor epoxide 2.0 4.0 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 2.0 4.0 ND 2.0 4.0 beta-Hexachlorocyclohexane (Betta-BHC) ND 4.0 2.0 ND delta-Hexachlorocyclohexane (Delta-BHC) 2.0 4.0 ND gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane) Methoxychlor 10 20 ND 170 340 Toxaphene ND

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 21

AETL Job Number	Submitted	Client
85198	11/08/2016	CSC-LB

Our Lab I.D.		85198.20		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	71.2		
Tetrachloro-m-xylene	30-150	67.8		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 22

AETL	Job	Number	Submitted	Client
85198		11/08/2016	CSC-LB	

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 111116EB3

Our Lab I.D.			85198.21	85198.22	85198.23	85198.24	
Client Sample I.D.			SB068-0.5	SB069-0.5	SB071-0.5	SB072-0.5	
Date Sampled			11/06/2016	11/06/2016	11/06/2016	11/06/2016	
Date Prepared			11/11/2016	11/11/2016	11/11/2016	11/11/2016	
Preparation Method			3550B	3550B	3550B	3550B	
Date Analyzed			11/14/2016	11/14/2016	11/14/2016	11/14/2016	
Matrix			Soil	Soil	Soil	Soil	
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	
Dilution Factor			1	1	1	1	
Analytes	MDL	PQL	Results	Results	Results	Results	
Aldrin	1.0	2.0	ND	ND	ND	ND	
Chlordane (Total)	1.0	2.0	107	42.8	1.82J	ND	
Chlordane (alpha)	1.0	2.0	53.9	16.4	ND	ND	
4,4'-DDD (DDD)	1.0	2.0	7.86	26.6	ND	ND	
4,4'-DDE (DDE)	1.0	2.0	367	535	2.17	ND	
4,4'-DDT (DDT)	1.0	2.0	30.9	146	4.40	ND	
Dieldrin	1.0	2.0	6.27	5.60	ND	ND	
Endosulfan 1	1.0	2.0	ND	ND	ND	ND	
Endosulfan 11	1.0	2.0	ND	ND	ND	ND	
Endosulfan sulfate	1.0	2.0	ND	ND	ND	ND	
Endrin	1.0	2.0	7.51	48.8	1.97J	ND	
Endrin aldehyde	1.0	2.0	1.07J	1.81J	ND	ND	
Endrin ketone	1.0	2.0	ND	ND	ND	ND	
Chlordane (gamma)	1.0	2.0	52.6	26.4	1.07J	ND	
Heptachlor	1.0	2.0	ND	ND	ND	ND	
Heptachlor epoxide	1.0	2.0	1.95J	ND	ND	ND	
alpha-Hexachlorocyclohexane (Alpha-BHC)	1.0	2.0	ND	ND	ND	ND	
beta-Hexachlorocyclohexane (Betta-BHC)	1.0	2.0	ND	ND	ND	ND	
delta-Hexachlorocyclohexane (Delta-BHC)	1.0	2.0	ND	ND	ND	ND	
gamma-Hexachlorocyclohexane	1.0	2.0	ND	ND	ND	ND	
(Gamma-BHC, Lindane)							
Methoxychlor	5.0	10.0	ND	ND	ND	ND	
Toxaphene	85.0	170.0	ND	ND	ND	ND	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 23

AETL Job Number	Submitted	Client
85198	11/08/2016	CSC-LB

Our Lab I.D.		85198.21	85198.22	85198.23	85198.24	
Surrogates	%Rec.Limit	% Rec.	% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150	77.4	80.2	71.8	82.4	
Tetrachloro-m-xylene	30-150	89.2	98.0	81.6	94.2	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: **24**

AETL Job Number

85198

Submitted

11/08/2016

Client

CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111116EB3

Our Lab I.D.			85198.25		
Client Sample I.D.			SB073-0.5		
Date Sampled	Date Sampled		11/06/2016		
Date Prepared			11/11/2016		
Preparation Method			3550B		
Date Analyzed			11/14/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			2		
Analytes	MDL	PQL	Results		
Aldrin	2.0	4.0	ND		
Chlordane (Total)	2.0	4.0	ND		
Chlordane (alpha)	2.0	4.0	ND		
4,4'-DDD (DDD)	2.0	4.0	ND		
4,4'-DDE (DDE)	2.0	4.0	ND		
4,4'-DDT (DDT)	2.0	4.0	ND		
Dieldrin	2.0	4.0	ND		
Endosulfan 1	2.0	4.0	ND		
Endosulfan 11	2.0	4.0	ND		
Endosulfan sulfate	2.0	4.0	ND		
Endrin	2.0	4.0	ND		
Endrin aldehyde	2.0	4.0	ND		
Endrin ketone	2.0	4.0	ND		
Chlordane (gamma)	2.0	4.0	ND		
Heptachlor	2.0	4.0	ND		
Heptachlor epoxide	2.0	4.0	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	2.0	4.0	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	2.0	4.0	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	2.0	4.0	ND		
gamma-Hexachlorocyclohexane	2.0	4.0	ND		
(Gamma-BHC, Lindane)					
Methoxychlor	10	20	ND		
Toxaphene	170	340	ND		

Comment(s):

85198.25: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 25

AETL Job Number	Submitted	Client
85198	11/08/2016	CSC-LB

Our Lab I.D.		85198.25		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	101		
Tetrachloro-m-xylene	30-150	105		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 26

AETL Job Number	Submitted	Client
85198	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111116EB3

Our Lab I.D.			85198.26		
Client Sample I.D.			SB074-0.5		
Date Sampled			11/06/2016		
Date Prepared			11/11/2016		
Preparation Method			3550B		
Date Analyzed			11/14/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aldrin	1.0	2.0	ND		
Chlordane (Total)	1.0	2.0	ND		
Chlordane (alpha)	1.0	2.0	ND		
4,4'-DDD (DDD)	1.0	2.0	ND		
4,4'-DDE (DDE)	1.0	2.0	ND		
4,4'-DDT (DDT)	1.0	2.0	ND		
Dieldrin	1.0	2.0	ND		
Endosulfan 1	1.0	2.0	ND		
Endosulfan 11	1.0	2.0	ND		
Endosulfan sulfate	1.0	2.0	ND		
Endrin	1.0	2.0	ND		
Endrin aldehyde	1.0	2.0	ND		
Endrin ketone	1.0	2.0	ND		
Chlordane (gamma)	1.0	2.0	ND		
Heptachlor	1.0	2.0	ND		
Heptachlor epoxide	1.0	2.0	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	1.0	2.0	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	1.0	2.0	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	1.0	2.0	ND		
gamma-Hexachlorocyclohexane	1.0	2.0	ND		
(Gamma-BHC, Lindane)					
Methoxychlor	5.0	10.0	ND		
Toxaphene	85.0	170.0	ND		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 27

AETL Job Number	Submitted	Client			
85198	11/08/2016	CSC-LB			

Our Lab I.D.		85198.26		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	68.8		
Tetrachloro-m-xylene	30-150	91.2		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 28

AETL Job Number	Submitted	Client
85198	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111116EB3

Our Lab I.D.			85198.27		
Client Sample I.D.			SB075-0.5		
Date Sampled			11/06/2016		
Date Prepared			11/11/2016		
Preparation Method			3550B		
Date Analyzed			11/15/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			2		
Analytes	MDL	PQL	Results		
Aldrin	2.0	4.0	ND		
Chlordane (Total)	2.0	4.0	ND		
Chlordane (alpha)	2.0	4.0	ND		
4,4'-DDD (DDD)	2.0	4.0	ND		
4,4'-DDE (DDE)	2.0	4.0	ND		
4,4'-DDT (DDT)	2.0	4.0	ND		
Dieldrin	2.0	4.0	ND		
Endosulfan 1	2.0	4.0	ND		
Endosulfan 11	2.0	4.0	ND		
Endosulfan sulfate	2.0	4.0	ND		
Endrin	2.0	4.0	ND		
Endrin aldehyde	2.0	4.0	ND		
Endrin ketone	2.0	4.0	ND		
Chlordane (gamma)	2.0	4.0	ND		
Heptachlor	2.0	4.0	ND		
Heptachlor epoxide	2.0	4.0	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	2.0	4.0	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	2.0	4.0	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	2.0	4.0	ND		
gamma-Hexachlorocyclohexane	2.0	4.0	ND		
(Gamma-BHC, Lindane)					
Methoxychlor	10	20	ND		
Toxaphene	170	340	ND		

Comment(s):

85198.27: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 29

AETL Job Number	Submitted	Client
85198	11/08/2016	CSC-LB

Our Lab I.D.		85198.27		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	116		
Tetrachloro-m-xylene	30-150	107		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: **30**

AETL	Job	Number	Submit	ted	Client
	851	98	11/08	/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111116EB3

Our Lab I.D. 85198.28 Client Sample I.D. SB076-0.5 Date Sampled 11/06/2016 Date Prepared 11/11/2016 Preparation Method 3550B Date Analyzed 11/15/2016 Matrix Soil Units ug/Kg Dilution Factor Analytes MDL Results **PQL** Aldrin 1.0 2.0 ND 1.0 2.0 ND Chlordane (Total) Chlordane (alpha) 1.0 2.0 ND 4,4'-DDD (DDD) 1.0 2.0 ND 2.0 ND 4,4'-DDE (DDE) 1.0 2.0 4,4'-DDT (DDT) 1.0 ND 2.0 1.0 ND Dieldrin 1.0 2.0 ND Endosulfan 1 1.0 2.0 ND Endosulfan 11 Endosulfan sulfate 1.0 2.0 ND 2.0 Endrin 1.0 ND Endrin aldehyde 1.0 2.0 ND Endrin ketone 1.0 2.0 ND 1.0 2.0 ND Chlordane (gamma) Heptachlor 1.0 2.0 ND Heptachlor epoxide 1.0 2.0 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 1.0 2.0 ND beta-Hexachlorocyclohexane (Betta-BHC) 1.0 2.0 ND 2.0 delta-Hexachlorocyclohexane (Delta-BHC) 1.0 ND 1.0 2.0 ND gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane) Methoxychlor 5.0 10.0 ND 85.0 170.0 Toxaphene ND

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 31

AETL Job Number	Submitted	Client
85198	11/08/2016	CSC-LB

Our Lab I.D.		85198.28		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	99.2		
Tetrachloro-m-xylene	30-150	103		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: **32**

AETL Job Number	Submitted	Client
85198	11/08/2016	CCC_T.R

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111116EB4

Our Lab I.D.			Method Blank		
Client Sample I.D.					
Date Sampled					
Date Prepared			11/11/2016		
Preparation Method			3550B		
Date Analyzed			11/15/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aldrin	1.0	2.0	ND		
Chlordane (Total)	1.0	2.0	ND		
Chlordane (alpha)	1.0	2.0	ND		
4,4'-DDD (DDD)	1.0	2.0	ND		
4,4'-DDE (DDE)	1.0	2.0	ND		
4,4'-DDT (DDT)	1.0	2.0	ND		
Dieldrin	1.0	2.0	ND		
Endosulfan 1	1.0	2.0	ND		
Endosulfan 11	1.0	2.0	ND		
Endosulfan sulfate	1.0	2.0	ND		
Endrin	1.0	2.0	ND		
Endrin aldehyde	1.0	2.0	ND		
Endrin ketone	1.0	2.0	ND		
Chlordane (gamma)	1.0	2.0	ND		
Heptachlor	1.0	2.0	ND		
Heptachlor epoxide	1.0	2.0	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	1.0	2.0	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	1.0	2.0	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	1.0	2.0	ND		
gamma-Hexachlorocyclohexane	1.0	2.0	ND		
(Gamma-BHC, Lindane)					
Methoxychlor	5.0	10.0	ND		
Toxaphene	85.0	170.0	ND		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 33

AETL Job Number	Submitted	Client
85198	11/08/2016	CSC-LB

Our Lab I.D.		Method Blank		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	86.6		
Tetrachloro-m-xylene	30-150	67.4		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: **34**

AETI	Job	Number	Submitted	Client

85198

11/08/2016

CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111116EB4

Our Lab I.D. 85198.29 Client Sample I.D. SB077-0.5 Date Sampled 11/06/2016 Date Prepared 11/11/2016 Preparation Method 3550B Date Analyzed 11/15/2016 Matrix Soil Units ug/Kg Dilution Factor 5 Analytes Results MDL **PQL** Aldrin 5 10 ND Chlordane (Total) 5 10 8.62J 5 Chlordane (alpha) 10 ND 4,4'-DDD (DDD) 5 10 ND 5 10 6.52J 4,4'-DDE (DDE) 5 8.72J 4,4'-DDT (DDT) 10 5 10 ND Dieldrin 5 10 ND Endosulfan 1 5 10 ND Endosulfan 11 Endosulfan sulfate 5 10 ND Endrin 5 10 ND Endrin aldehyde 5 10 ND Endrin ketone 5 10 ND Chlordane (gamma) 5 10 ND Heptachlor 5 10 ND Heptachlor epoxide 5 10 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 5 10 ND 5 beta-Hexachlorocyclohexane (Betta-BHC) 10 ND 5 10 ND delta-Hexachlorocyclohexane (Delta-BHC) 5 10 ND gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane) Methoxychlor 25 50 ND 425 850 Toxaphene ND

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 35

AETL Job Number	Submitted	Client
85198	11/08/2016	CSC-LB

Our Lab I.D.		85198.29		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	124		
Tetrachloro-m-xylene	30-150	99.4		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: **36**

AETL Job Number	Submitted	Client
85198	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111116EB4

Our Lab I.D.			85198.30	85198.31		
Client Sample I.D.			SB079-0.5	SB080-0.5		
Date Sampled		11/06/2016	11/06/2016			
Date Prepared			11/11/2016	11/11/2016		
Preparation Method			3550B	3550B		
Date Analyzed				11/15/2016		
Matrix			Soil	Soil		
Units			ug/Kg	ug/Kg		
Dilution Factor			2	2		
Analytes	MDL	PQL	Results	Results		
Aldrin	2.0	4.0	ND	ND		
Chlordane (Total)	2.0	4.0	ND	11.4		
Chlordane (alpha)	2.0	4.0	ND	6.31		
4,4'-DDD (DDD)	2.0	4.0	ND	ND		
4,4'-DDE (DDE)	2.0	4.0	ND	ND		
4,4'-DDT (DDT)	2.0	4.0	ND	2.50J		
Dieldrin	2.0	4.0	ND	ND		
Endosulfan 1	2.0	4.0	ND	ND		
Endosulfan 11	2.0	4.0	ND	ND		
Endosulfan sulfate	2.0	4.0	ND	ND		
Endrin	2.0	4.0	ND	ND		
Endrin aldehyde	2.0	4.0	ND	ND		
Endrin ketone	2.0	4.0	ND	ND		
Chlordane (gamma)	2.0	4.0	ND	5.11		
Heptachlor	2.0	4.0	ND	ND		
Heptachlor epoxide	2.0	4.0	ND	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	2.0	4.0	ND	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	2.0	4.0	ND	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	2.0	4.0	ND	ND		
gamma-Hexachlorocyclohexane	2.0	4.0	ND	ND		
(Gamma-BHC, Lindane)						
Methoxychlor	10	20	ND	ND		
Toxaphene	170	340	ND	ND		

Comment(s):

85198.30: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 37

AETL Job Number	Submitted	Client
85198	11/08/2016	CSC-LB

Our Lab I.D.		85198.30	85198.31		
Surrogates	%Rec.Limit	% Rec.	% Rec.		
Decachlorobiphenyl	30-150	108	115		
Tetrachloro-m-xylene	30-150	107	102		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: **38**

AETL	Job	Number	Submitted	Client

85198

11/08/2016

CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 111116EB4

Our Lab I.D.			85198.32		
Client Sample I.D.			SB081-0.5		
Date Sampled			11/06/2016		
Date Prepared			11/11/2016		
Preparation Method			3550B		
Date Analyzed			11/15/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			5		
Analytes	MDL	PQL	Results		
Aldrin	5	10	ND		
Chlordane (Total)	5	10	ND		
Chlordane (alpha)	5	10	ND		
4,4'-DDD (DDD)	5	10	ND		
4,4'-DDE (DDE)	5	10	ND		
4,4'-DDT (DDT)	5	10	ND		
Dieldrin	5	10	ND		
Endosulfan 1	5	10	ND		
Endosulfan 11	5	10	ND		
Endosulfan sulfate	5	10	ND		
Endrin	5	10	ND		
Endrin aldehyde	5	10	ND		
Endrin ketone	5	10	ND		
Chlordane (gamma)	5	10	ND		
Heptachlor	5	10	ND		
Heptachlor epoxide	5	10	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	5	10	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	5	10	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	5	10	ND		
gamma-Hexachlorocyclohexane	5	10	ND		
(Gamma-BHC, Lindane)					
Methoxychlor	25	50	ND		
Toxaphene	425	850	ND		

Comment(s):

85198.32: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 39

AETL Job Number	Submitted	Client
85198	11/08/2016	CSC-LB

Our Lab I.D.		85198.32		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	108		
Tetrachloro-m-xylene	30-150	111		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 40

AETL Job Number	Submitted	Client
85198	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 111116EB2; Dup or Spiked Sample: 85198.17; LCS: Clean Sand; QC Prepared: 11/11/2016; QC Analyzed: 11/12/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aldrin	0.00	20.0	15.8	79.0	20.0	15.7	78.5	<1	40-150	<40
4,4'-DDT (DDT)	0.00	50.0	26.0	52.0	50.0	23.5	47.0	10.1	40-150	<40
Dieldrin	0.00	50.0	39.1	78.2	50.0	37.1	74.2	5.25	40-150	<40
Endrin	0.00	50.0	54.5	109	50.0	46.2	92.4	16.5	40-150	<40
Heptachlor	0.00	20.0	15.2	76.0	20.0	14.7	73.5	3.34	40-150	<40
gamma-Hexachlorocyclohexane	0.00	20.0	16.5	82.5	20.0	16.2	81.0	1.83	40-150	<40
(Gamma-BHC, Lindane)										
Surrogates										
Decachlorobiphenyl	0.00	50.0	34.5	69.0	50.0	36.6	73.2	6.09	30-150	<40
Tetrachloro-m-xylene	0.00	50.0	51.0	102	50.0	50.0	100	1.96	30-150	<40

QC Batch No: 111116EB2; Dup or Spiked Sample: 85198.17; LCS: Clean Sand; QC Prepared: 11/11/2016; QC Analyzed: 11/12/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aldrin	20.0	11.8	59.0	20.0	11.8	59.0	<1	50-150	<40	
4,4'-DDT (DDT)	50.0	25.9	51.8	50.0	26.5	53.0	2.29	50-150	<40	
Dieldrin	50.0	35.4	70.8	50.0	36.0	72.0	1.68	50-150	<40	
Endrin	50.0	52.0	104	50.0	52.5	105	<1	50-150	<40	
Heptachlor	20.0	11.7	58.5	20.0	12.2	61.0	4.18	50-150	<40	
gamma-Hexachlorocyclohexane	20.0	12.5	62.5	20.0	13.0	65.0	3.92	50-150	<40	
(Gamma-BHC, Lindane)										
Surrogates										
Decachlorobiphenyl	50.0	35.4	70.8	50.0	35.1	70.2	<1	30-150	<40	
Tetrachloro-m-xylene	50.0	36.5	73.0	50.0	39.0	78.0	6.85	30-150	<40	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: **41**

AETL Job Number	Submitted	Client
85198	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 111116EB3; Dup or Spiked Sample: 85198.28; LCS: Clean Sand; QC Prepared: 11/11/2016; QC Analyzed: 11/14/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aldrin	0.00	20.0	15.3	76.5	20.0	15.9	79.5	3.85	40-150	<40
4,4'-DDT (DDT)	0.00	50.0	25.0	50.0	50.0	25.8	51.6	3.15	40-150	<40
Dieldrin	0.00	50.0	38.1	76.2	50.0	39.6	79.2	3.86	40-150	<40
Endrin	0.00	50.0	65.5	131	50.0	70.0	140	6.64	40-150	<40
Heptachlor	0.00	20.0	14.8	74.0	20.0	15.4	77.0	3.97	40-150	<40
gamma-Hexachlorocyclohexane	0.00	20.0	15.5	77.5	20.0	16.3	81.5	5.03	40-150	<40
(Gamma-BHC, Lindane)										
Surrogates										
Decachlorobiphenyl	0.00	50.0	43.5	87.0	50.0	44.3	88.6	1.84	30-150	<40
Tetrachloro-m-xylene	0.00	50.0	50.0	100	50.0	54.0	108	8.00	30-150	<40

QC Batch No: 111116EB3; Dup or Spiked Sample: 85198.28; LCS: Clean Sand; QC Prepared: 11/11/2016; QC Analyzed: 11/14/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aldrin	20.0	12.3	61.5	20.0	16.5	82.5	29.2	50-150	<40	
4,4'-DDT (DDT)	50.0	25.4	50.8	50.0	30.7	61.4	18.9	50-150	<40	
Dieldrin	50.0	33.2	66.4	50.0	41.1	82.2	21.3	50-150	<40	
Endrin	50.0	39.7	79.4	50.0	46.5	93.0	15.8	50-150	<40	
Heptachlor	20.0	11.5	57.5	20.0	15.6	78.0	30.3	50-150	<40	
gamma-Hexachlorocyclohexane	20.0	12.5	62.5	20.0	16.9	84.5	29.9	50-150	<40	
(Gamma-BHC, Lindane)										
Surrogates										
Decachlorobiphenyl	50.0	35.7	71.4	50.0	42.1	84.2	17.9	30-150	<40	
Tetrachloro-m-xylene	50.0	34.0	68.0	50.0	52.0	104	52.9	30-150	<40	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 42

AETL Job Number	Submitted	Client
85198	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 111116EB4; Dup or Spiked Sample: 85246.24; LCS: Clean Sand; QC Prepared: 11/11/2016; MS Analyzed: 11/15/2016; LCS Analyzed: 11/14/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aldrin	0.00	20.0	16.9	84.5	20.0	15.3	76.5	9.94	40-150	<40
4,4'-DDT (DDT)	0.00	50.0	61.5	123	50.0	56.0	112	9.36	40-150	<40
Dieldrin	0.00	50.0	44.0	88.0	50.0	39.7	79.4	10.3	40-150	<40
Endrin	0.00	50.0	71.5	143	50.0	65.0	130	9.52	40-150	<40
Heptachlor	0.00	20.0	15.9	79.5	20.0	13.9	69.5	13.4	40-150	<40
gamma-Hexachlorocyclohexane	0.00	20.0	17.2	86.0	20.0	15.2	76.0	12.3	40-150	<40
(Gamma-BHC, Lindane)										
Surrogates										
Decachlorobiphenyl	0.00	50.0	48.5	97.0	50.0	46.2	92.4	4.74	30-150	<40
Tetrachloro-m-xylene	0.00	50.0	52.5	105	50.0	48.3	96.6	8.00	30-150	<40

QC Batch No: 111116EB4; Dup or Spiked Sample: 85246.24; LCS: Clean Sand; QC Prepared: 11/11/2016; MS Analyzed: 11/15/2016; LCS Analyzed: 11/14/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aldrin	20.0	16.1	80.5	20.0	12.8	64.0	22.8	50-150	<40	
4,4'-DDT (DDT)	50.0	51.0	102	50.0	48.3	96.6	5.44	50-150	<40	
Dieldrin	50.0	40.5	81.0	50.0	35.8	71.6	12.3	50-150	<40	
Endrin	50.0	60.0	120	50.0	53.5	107	11.5	50-150	<40	
Heptachlor	20.0	14.9	74.5	20.0	12.1	60.5	20.7	50-150	<40	
gamma-Hexachlorocyclohexane	20.0	16.6	83.0	20.0	12.9	64.5	25.1	50-150	<40	
(Gamma-BHC, Lindane)										
Surrogates										
Decachlorobiphenyl	50.0	42.1	84.2	50.0	42.2	84.4	<1	30-150	<40	
Tetrachloro-m-xylene	50.0	52.5	105	50.0	36.5	73.0	30.5	30-150	<40	

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

*: In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected. However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attention: Aaron Garrett

Number of Pages 51

Date Received 11/08/2016 Date Reported 11/21/2016

Job Number	Order Date	Client
85199	11/08/2016	CSC-LB

Enclosed please find results of analyses of 31 soil samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By:

Approved By: C. Raymana

Cyrus Razmara, Ph.D. Laboratory Director

CSK CHAIN OF CUSTODY RECORD CHEMTEK Environmental Laboratories Inc.

95/58 sob Noc.

13554 Larwin Circle, Santa Fe Springs, CA 90670

Ematt: ChemtekLabs@hotmail.com Tel. (562) 926-9848 FAX (562) 926-8324

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)

(TELAP No. 2629) of	ANALYSIS REQUIRED	ТЯ		8) S 20 30 30 30	Og. 11 / 09 101	IN I	D certive (CHA)	TPH TPH TPH TPH TPH	NORM 24hr 48 hr Other 55 (% CE 57) / 17 (% CE	04		199.02	799,33	Y0, 64)	30,00	199.06	199.03	149,58	(49.00)	(99.10	(99.11	199.1°	(99.13	49.17	(99.15	(49.16	PRINT NAME COMPANY NAME DATE TIME	
					ВО																							,
ab (ELAP No. 2629)	NO.		=				P.O. No.		24 hr 48 hr Other	REMARKS Preserved CONT	199.01	85199.02	85149.23	82/49,04	85149.05	85199,06	85199.07	85199,38	85149.09	85199.10	35(49.11	35199, il	85199.13	85199.14	25(99.15	85199.16		
La Depi di neglinancciegliegi. (ELAF No. 1435) & Mobile Lab (ELAF No. 2629)	CUSTOMER INFORMATION		Email:		FAX:	PROJECT INFORMATION			EDF Turn A	SAMPLED SAMPLED TYPE * pH/Time												NAME OF THE OWNER, WHEN THE OW				>	SIGNATURE	1
or beginning the difference of the second of		COMPANY NAME:	PROJECT CONTACT:	ADDRESS:	PHONE:		PROJECT NAME	SITE ADDRESS:	SAMPLED BY:	SAMPLEID	59052-2.5 M	83-0.5	67-0.5	5:0-52	6-0-2	₹7-0.5	KB -0.3	69-0.7	40-0.5	41-0.5	92.0.5		3-4-0.5	15-0.5	96-0.5	(0°L)	SIGN	Na dallallionilla

NOTE: Samples are discarded 30 days after results are reported unless other arrangements are made.

RECEIVED FOR LABORATORY BY

RELINQUISHED BY: RECEIVED BY:

Distribution: WHITE with report / YELLOW to CHEMTEK / PINK to courier *Type: so-Soil GW-Ground Water WW-Waste Water AQ-Aqueous A-Air OT-Other

1930

11/89/11C

1830 08661

91/3/11 91-8-16

AET AGIL

CHEMTEK Environmental Laboratories Inc.

13554 Larwin Circle, Same Fe Springs, CA 90670

Tel. (562) 926

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)

96/58 SAG	
ノク	iekLabs@hołmail.com
Circle, Santa-Fe Springs, CA 90670	-9848 FAX (562) 926-8324 Emoth-Chemi

CSC CHAIN OF CUSTODY RECORD

J to

Page:

A:Jum 14 30 TIME 0561 91-8-11 9//8/11 DATE Distribution: WHITE with report / YELLOW to CHEMTEK / PINK to courier 202 FIV 7 CAM 17 Metals ANALYSIS REQUIRED Sulfide, Cyanide, O&G ph, Conductivity, Turbidity COD \ 122 \ BOD \ 1D2 OXYGENATES (8260 B) SHORT **AOC**² (8590 B) ENTE 1011 AETI CARBON CHAIN 8015M TPH D or DRO 8015M TPH G or GRO NO. OF 9 7918 NORM 24 hr 48 hr Other Preserved Sargisp P.O. No. Jern REMARKS dsilve 85199.13 35199.30 85199.29 85199.18 35199.20 45.00128 25/99.25 85199.26 85199.28 85199.27 85199.12 25199:19 85199.3 85199.21 25999.13 EDF Turn Around Time CUSTOMER INFORMATION SAMPLED TYPE * pH/Time Email: PROJECT INFORMATION FAX: TIME SAMPLED DATE SIGNATURE 15 RECEIVED FOR LABORATORY BY 105-0.5 RELINQUISHED BY: X 2.0-8/2 no 24 50-101 500 601 (S) 0- FO 5.0-901 50-201 5,0- 35var 44.0.5 103-0.5 45-0.5 100-00 5.0-101 COMPANY NAME: PROJECT CONTACT 102-0.5 SAMPLEID RELINQUISHED BY: PROJECT NAME SITE ADDRESS: SAMPLED BY: RECEIVED BY: ADDRESS: PHONE

NOTE: Samples are discarded 30 days after results are reported unless other arrangements are made

*Type: so-Soil GW-Ground Water WW-Waste Water AQ-Aqueous A-Air OT-Other

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attention: Aaron Garrett Project ID: None

Date Received 11/08/2016
Date Reported 11/21/2016

Job Number	Order Date	Client
85199	11/08/2016	CSC-LB

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 31 samples with the following specification on 11/08/2016.

Lab ID	Sample ID	Sample Date	Matrix	Quantity Of Containers
85199.01	SB82-0.5	11/06/2016	Soil	1
85199.02	SB83-0.5	11/06/2016	Soil	1
85199.03	SB84-0.5	11/06/2016	Soil	1
85199.04	SB85-0.5	11/06/2016	Soil	1
85199.05	SB86-0.5	11/06/2016	Soil	1
85199.06	SB87-0.5	11/06/2016	Soil	1
85199.07	SB88-0.5	11/06/2016	Soil	1
85199.08	SB89-0.5	11/06/2016	Soil	1
85199.09	SB90-0.5	11/06/2016	Soil	1
85199.10	SB91-0.5	11/06/2016	Soil	1
85199.11	SB92-0.5	11/06/2016	Soil	1
85199.12	SB93-0.5	11/06/2016	Soil	1
85199.13	SB94-0.5	11/06/2016	Soil	1
85199.14	SB95-0.5	11/06/2016	Soil	1
85199.15	SB96-0.5	11/06/2016	Soil	1
85199.16	SB97-0.5	11/06/2016	Soil	1
85199.17	SB98-0.5	11/05/2016	Soil	1
85199.18	SB99-0.5	11/05/2016	Soil	1
85199.19	SB100-0.5	11/05/2016	Soil	1
85199.20	SB101-0.5	11/05/2016	Soil	1
85199.21	SB102-0.5	11/05/2016	Soil	1
85199.22	SB103-0.5	11/05/2016	Soil	1
85199.23	SB104-0.5	11/05/2016	Soil	1
85199.24	SB105-0.5	11/05/2016	Soil	1

Continued

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 B
Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attention: Aaron Garrett Project ID: None

Date Received 11/08/2016
Date Reported 11/21/2016

Job Number	Order Date	Client
85199	11/08/2016	CSC-LB

CERTIFICATE OF ANALYSIS CASE NARRATIVE

85199.25	SB106-0.5	11/05/2016	Soil	1
85199.26	SB107-0.5	11/05/2016	Soil	1
85199.27	SB108-0.5	11/05/2016	Soil	1
85199.28	SB109-0.5	11/05/2016	Soil	1
85199.29	SB038-0.5	11/05/2016	Soil	1
85199.30	SB044-0.5	11/05/2016	Soil	1
85199.31	SB045-0.5	11/05/2016	Soil	1

Method ^ Submethod	Req Date	Priority	TAT	Units
(8081A)	11/15/2016	2	Normal	ug/Kg

The samples were analyzed as specified on the enclosed chain of custody. Analytical non-conformances have been noted on the report.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

		C. Raymana	
Checked By:	Approved By:	J	

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett

Page: 2

AETL Job	Number	Submitted	Client
8519	9	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111416EB2

Our Lab I.D.			Method Blank		
Client Sample I.D.					
Date Sampled					
Date Prepared			11/14/2016		
Preparation Method			3550B		
Date Analyzed			11/15/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aldrin	1.0	2.0	ND		
Chlordane (Total)	1.0	2.0	ND		
Chlordane (alpha)	1.0	2.0	ND		
4,4'-DDD (DDD)	1.0	2.0	ND		
4,4'-DDE (DDE)	1.0	2.0	ND		
4,4'-DDT (DDT)	1.0	2.0	ND		
Dieldrin	1.0	2.0	ND		
Endosulfan 1	1.0	2.0	ND		
Endosulfan 11	1.0	2.0	ND		
Endosulfan sulfate	1.0	2.0	ND		
Endrin	1.0	2.0	ND		
Endrin aldehyde	1.0	2.0	ND		
Endrin ketone	1.0	2.0	ND		
Chlordane (gamma)	1.0	2.0	ND		
Heptachlor	1.0	2.0	ND		
Heptachlor epoxide	1.0	2.0	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	1.0	2.0	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	1.0	2.0	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	1.0	2.0	ND		
gamma-Hexachlorocyclohexane	1.0	2.0	ND		
(Gamma-BHC, Lindane)					
Methoxychlor	5.0	10.0	ND		
Toxaphene	85.0	170.0	ND		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 3

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Our Lab I.D.		Method Blank		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	78.6		
Tetrachloro-m-xylene	30-150	95.4		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 4

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111416EB2

Our Lab I.D. 85199.01 Client Sample I.D. SB82-0.5 Date Sampled 11/06/2016 Date Prepared 11/14/2016 Preparation Method 3550B Date Analyzed 11/15/2016 Matrix Soil Units ug/Kg Dilution Factor 2 Analytes MDL Results **PQL** Aldrin 2.0 4.0 ND 2.0 4.0 9.44 Chlordane (Total) Chlordane (alpha) 2.0 4.0 4.09 4,4'-DDD (DDD) 2.0 4.0 ND 4.0 5.79 4,4'-DDE (DDE) 2.0 4.0 4,4'-DDT (DDT) 2.0 ND 2.0 4.0 2.53J Dieldrin 2.0 4.0 ND Endosulfan 1 2.0 4.0 ND Endosulfan 11 Endosulfan sulfate 2.0 4.0 ND 4.0 Endrin 2.0 ND Endrin aldehyde 2.0 4.0 ND 4.0 Endrin ketone 2.0 ND Chlordane (gamma) 2.0 4.0 5.35 Heptachlor 2.0 4.0 ND Heptachlor epoxide 2.0 4.0 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 2.0 4.0 ND 2.0 4.0 beta-Hexachlorocyclohexane (Betta-BHC) ND 4.0 2.0 ND delta-Hexachlorocyclohexane (Delta-BHC) 2.0 4.0 ND gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane) Methoxychlor 10 20 ND 170 340 Toxaphene ND

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 5

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Our Lab I.D.		85199.01		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	88.8		
Tetrachloro-m-xylene	30-150	79.6		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 6

	AETL Job Number	Submitted	Client
I	85199	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 111416EB2

Our Lab I.D.			85199.02		
Client Sample I.D.			SB83-0.5		
Date Sampled			11/06/2016		
Date Prepared			11/14/2016		
Preparation Method			3550B		
Date Analyzed			11/15/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			5		
Analytes	MDL	PQL	Results		
Aldrin	5	10	ND		
Chlordane (Total)	5	10	ND		
Chlordane (alpha)	5	10	ND		
4,4'-DDD (DDD)	5	10	ND		
4,4'-DDE (DDE)	5	10	ND		
4,4'-DDT (DDT)	5	10	ND		
Dieldrin	5	10	ND		
Endosulfan 1	5	10	ND		
Endosulfan 11	5	10	ND		
Endosulfan sulfate	5	10	ND		
Endrin	5	10	ND		
Endrin aldehyde	5	10	ND		
Endrin ketone	5	10	ND		
Chlordane (gamma)	5	10	ND		
Heptachlor	5	10	ND		
Heptachlor epoxide	5	10	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	5	10	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	5	10	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	5	10	ND		
gamma-Hexachlorocyclohexane	5	10	ND		
(Gamma-BHC, Lindane)					
Methoxychlor	25	50	ND		
Toxaphene	425	850	ND		

Comment(s):

85199.02: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 7

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Our Lab I.D.		85199.02		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	90.2		
Tetrachloro-m-xylene	30-150	58.6		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 8

AETL Job	Number	Submitted	Client
8519	9	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 111416EB2

Our Lab I.D.			85199.03	85199.04	85199.05	
Client Sample I.D.			SB84-0.5	SB85-0.5	SB86-0.5	
Date Sampled			11/06/2016	11/06/2016	11/06/2016	
Date Prepared			11/14/2016	11/14/2016	11/14/2016	
Preparation Method			3550B	3550B	3550B	
Date Analyzed				11/16/2016	11/16/2016	
Matrix			Soil	Soil	Soil	
Units			ug/Kg	ug/Kg	ug/Kg	
Dilution Factor			1	1	1	
Analytes	MDL	PQL	Results	Results	Results	
Aldrin	1.0	2.0	ND	ND	ND	
Chlordane (Total)	1.0	2.0	ND	ND	ND	
Chlordane (alpha)	1.0	2.0	ND	ND	ND	
4,4'-DDD (DDD)	1.0	2.0	ND	ND	ND	
4,4'-DDE (DDE)	1.0	2.0	ND	ND	ND	
4,4'-DDT (DDT)	1.0	2.0	ND	ND	ND	
Dieldrin	1.0	2.0	ND	ND	ND	
Endosulfan 1	1.0	2.0	ND	ND	ND	
Endosulfan 11	1.0	2.0	ND	ND	ND	
Endosulfan sulfate	1.0	2.0	ND	ND	ND	
Endrin	1.0	2.0	ND	ND	ND	
Endrin aldehyde	1.0	2.0	ND	ND	ND	
Endrin ketone	1.0	2.0	ND	ND	ND	
Chlordane (gamma)	1.0	2.0	ND	ND	ND	
Heptachlor	1.0	2.0	ND	ND	ND	
Heptachlor epoxide	1.0	2.0	ND	ND	ND	
alpha-Hexachlorocyclohexane (Alpha-BHC)	1.0	2.0	ND	ND	ND	
beta-Hexachlorocyclohexane (Betta-BHC)	1.0	2.0	ND	ND	ND	
delta-Hexachlorocyclohexane (Delta-BHC)	1.0	2.0	ND	ND	ND	
gamma-Hexachlorocyclohexane	1.0	2.0	ND	ND	ND	
(Gamma-BHC, Lindane)						
Methoxychlor	5.0	10.0	ND	ND	ND	
Toxaphene	85.0	170.0	ND	ND	ND	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 9

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Our Lab I.D.		85199.03	85199.04	85199.05	
Surrogates	%Rec.Limit	% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150	63.0	61.8	71.2	
Tetrachloro-m-xylene	30-150	85.8	88.2	95.0	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 10

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111416EB2

Our Lab I.D.			85199.06		
Client Sample I.D.			SB87-0.5		
Date Sampled			11/06/2016		
Date Prepared			11/14/2016		
Preparation Method			3550B		
Date Analyzed			11/16/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			10		
Analytes	MDL	PQL	Results		
Aldrin	10	20	ND		
Chlordane (Total)	10	20	ND		
Chlordane (alpha)	10	20	ND		
4,4'-DDD (DDD)	10	20	ND		
4,4'-DDE (DDE)	10	20	ND		
4,4'-DDT (DDT)	10	20	ND		
Dieldrin	10	20	ND		
Endosulfan 1	10	20	ND		
Endosulfan 11	10	20	ND		
Endosulfan sulfate	10	20	ND		
Endrin	10	20	ND		
Endrin aldehyde	10	20	ND		
Endrin ketone	10	20	ND		
Chlordane (gamma)	10	20	ND		
Heptachlor	10	20	ND		
Heptachlor epoxide	10	20	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	10	20	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	10	20	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	10	20	ND		
gamma-Hexachlorocyclohexane	10	20	ND		
(Gamma-BHC, Lindane)					
Methoxychlor	50	100	ND		
Toxaphene	850	1700	ND		

Comment(s):

85199.06: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 11

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Our Lab I.D.		85199.06		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	80.0		
Tetrachloro-m-xylene	30-150	68.6		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 12

AETL	Job	Number	Submitted	Client

11/08/2016

CSC-LB

85199

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111416EB2

Our Lab I.D. 85199.07 Client Sample I.D. SB88-0.5 Date Sampled 11/06/2016 Date Prepared 11/14/2016 Preparation Method 3550B Date Analyzed 11/16/2016 Matrix Soil Units ug/Kg **Dilution Factor** 5 Analytes Results MDL **PQL** Aldrin 5 10 ND Chlordane (Total) 5 10 131 5 Chlordane (alpha) 10 59.7 4,4'-DDD (DDD) 5 10 ND 5 10 ND 4,4'-DDE (DDE) 5 4,4'-DDT (DDT) 10 ND 5 10 ND Dieldrin 5 10 ND Endosulfan 1 5 10 ND Endosulfan 11 Endosulfan sulfate 5 10 ND Endrin 5 10 ND Endrin aldehyde 5 10 ND Endrin ketone 5 10 ND Chlordane (gamma) 5 10 71.2 Heptachlor 5 10 ND Heptachlor epoxide 5 10 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 5 10 ND 5 beta-Hexachlorocyclohexane (Betta-BHC) 10 ND 5 delta-Hexachlorocyclohexane (Delta-BHC) 10 ND 5 10 ND gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane) Methoxychlor 25 50 ND 425 850 Toxaphene ND

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 13

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Our Lab I.D.		85199.07		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	59.0		
Tetrachloro-m-xylene	30-150	83.2		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 14

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 111416EB2

Our Lab I.D.			85199.08		
Client Sample I.D.			SB89-0.5		
Date Sampled			11/06/2016		
Date Prepared			11/14/2016		
Preparation Method			3550B		
Date Analyzed			11/16/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			10		
Analytes	MDL	PQL	Results		
Aldrin	10	20	ND		
Chlordane (Total)	10	20	ND		
Chlordane (alpha)	10	20	ND		
4,4'-DDD (DDD)	10	20	12.6J		
4,4'-DDE (DDE)	10	20	ND		
4,4'-DDT (DDT)	10	20	17.4J		
Dieldrin	10	20	10.1J		
Endosulfan 1	10	20	ND		
Endosulfan 11	10	20	ND		
Endosulfan sulfate	10	20	ND		
Endrin	10	20	ND		
Endrin aldehyde	10	20	ND		
Endrin ketone	10	20	ND		
Chlordane (gamma)	10	20	ND		
Heptachlor	10	20	ND		
Heptachlor epoxide	10	20	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	10	20	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	10	20	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	10	20	ND		
gamma-Hexachlorocyclohexane	10	20	ND		
(Gamma-BHC, Lindane)					
Methoxychlor	50	100	ND		
Toxaphene	850	1700	ND		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 15

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Our Lab I.D.		85199.08		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	77.8		
Tetrachloro-m-xylene	30-150	64.6		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 16

	AETL Job	Number	Submitted	Client
ı	85	199	11/08/2016	CCC-T.B

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111416EB2

Our Lab I.D. 85199.09 Client Sample I.D. SB90-0.5 Date Sampled 11/06/2016 Date Prepared 11/14/2016 Preparation Method 3550B Date Analyzed 11/16/2016 Matrix Soil Units ug/Kg Dilution Factor 5 Analytes Results MDL **PQL** Aldrin 5 10 ND Chlordane (Total) 5 10 ND 5 Chlordane (alpha) 10 ND 4,4'-DDD (DDD) 5 10 ND 5 10 ND 4,4'-DDE (DDE) 5 4,4'-DDT (DDT) 10 ND 5 10 ND Dieldrin 5 10 ND Endosulfan 1 5 10 ND Endosulfan 11 Endosulfan sulfate 5 10 ND Endrin 5 10 ND Endrin aldehyde 5 10 ND Endrin ketone 5 10 ND Chlordane (gamma) 5 10 ND Heptachlor 5 10 ND Heptachlor epoxide 5 10 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 5 10 ND 5 beta-Hexachlorocyclohexane (Betta-BHC) 10 ND 5 delta-Hexachlorocyclohexane (Delta-BHC) 10 ND 5 10 ND gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane) Methoxychlor 25 50 ND 425 850 Toxaphene ND

Comment(s):

85199.09: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 17

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Our Lab I.D.		85199.09		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	76.4		
Tetrachloro-m-xylene	30-150	67.2		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 18

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111416EB2

Our Lab I.D. 85199.10 Client Sample I.D. SB91-0.5 Date Sampled 11/06/2016 Date Prepared 11/14/2016 Preparation Method 3550B Date Analyzed 11/16/2016 Matrix Soil Units ug/Kg Dilution Factor Analytes Results **PQL** MDL Aldrin 1.0 2.0 ND 1.0 2.0 4.18 Chlordane (Total) Chlordane (alpha) 1.0 2.0 1.82J 4,4'-DDD (DDD) 1.0 2.0 ND 2.0 ND 4,4'-DDE (DDE) 1.0 2.0 4,4'-DDT (DDT) 1.0 ND 2.0 1.0 ND Dieldrin 1.0 2.0 ND Endosulfan 1 1.0 2.0 ND Endosulfan 11 Endosulfan sulfate 1.0 2.0 ND 2.0 Endrin 1.0 ND Endrin aldehyde 1.0 2.0 ND Endrin ketone 1.0 2.0 ND 1.0 2.0 2.36 Chlordane (gamma) Heptachlor 1.0 2.0 ND Heptachlor epoxide 1.0 2.0 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 1.0 2.0 ND beta-Hexachlorocyclohexane (Betta-BHC) 1.0 2.0 ND 2.0 1.0 ND delta-Hexachlorocyclohexane (Delta-BHC) 1.0 2.0 ND gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane) Methoxychlor 5.0 10.0 ND 85.0 170.0 Toxaphene ND

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 19

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Our Lab I.D.		85199.10		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	57.6		
Tetrachloro-m-xylene	30-150	79.8		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 20

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 111416EB2

Simple LD.	Our Lab I.D. 85199.11								
Date Sampled 11/06/2016				85199.11					
Date Prepared 11/14/2016	1								
Preparation Method 3550B									
Date Analyzed 11/16/2016 Matrix Soil Soil <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									
Matrix Soil ug/Kg Dilution Factor 2 Secondary Control Analytes MDL PQL Results Aldrin 2.0 4.0 ND Chlordane (Total) 2.0 4.0 ND Chlordane (alpha) 2.0 4.0 ND 4,4'-DDD (DDD) 2.0 4.0 ND 4,4'-DDT (DDT) 2.0 4.0 ND Endosulfan 2.0 4.0 ND Endosulfan 1 2.0 4.0 ND Endosulfan 1 2.0 4.0 ND Endosulfan 11 2.0 4.0 ND Endrin sulfate 2.0 4.0 ND Endrin ladehyde									
Units									
Dilution Factor									
Analytes MDL PQL Results Aldrin 2.0 4.0 ND Chlordane (Total) 2.0 4.0 ND Chlordane (alpha) 2.0 4.0 ND 4,4-DDD (DDD) 2.0 4.0 ND 4,4-DDE (DDE) 2.0 4.0 ND 4,4-DDT (DDT) 2.0 4.0 ND Dieldrin 2.0 4.0 ND Endosulfan 1 2.0 4.0 ND Endosulfan 11 2.0 4.0 ND Endrin sulfate 2.0 4.0 ND Endrin sulfate 2.0 4.0 ND Endrin ketone 2.0 4.0 ND Chlordane (gamma) 2.0 4.0 ND Heptachlor 2.0 4.0 ND Heptachlor epoxide 2.0 4.0 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 2.0 4.0 ND beta-Hexachlorocyclohexane (Delta-BHC) 2.0 4.0									
Aldrin 2.0 4.0 ND Chlordane (Total) 2.0 4.0 ND Chlordane (alpha) 2.0 4.0 ND 4,4*DDD (DDD) 2.0 4.0 ND 4,4*DDT (DDT) 2.0 4.0 ND 4,4*DDT (DDT) 2.0 4.0 ND Dieldrin 2.0 4.0 ND Endosulfan 1 2.0 4.0 ND Endosulfan 10 2.0 4.0 ND Endrin sulfate 2.0 4.0 ND Endrin 2.0 4.0 ND Endrin aldehyde 2.0 4.0 ND Endrin ketone 2.0 4.0 ND Chlordane (gamma) 2.0 4.0 ND Heptachlor 2.0 4.0 ND Heptachlor epoxide 2.0 4.0 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 2.0 4.0 ND beta-Hexachlorocyclohexane (Betta-BHC) 2.0 4.0 ND delta-Hexachlorocyclohexane (Delta-BHC) 2.0 4.0 ND									
Chlordane (Total) 2.0 4.0 ND Chlordane (alpha) 2.0 4.0 ND 4,4*-DDD (DDD) 2.0 4.0 ND 4,4*-DDE (DDE) 2.0 4.0 ND 4,4*-DDT (DDT) 2.0 4.0 ND Dieldrin 2.0 4.0 ND Endosulfan 1 2.0 4.0 ND Endosulfan 11 2.0 4.0 ND Endrin sulfate 2.0 4.0 ND Endrin sulfate 2.0 4.0 ND Endrin ladehyde 2.0 4.0 ND Endrin ketone 2.0 4.0 ND Chlordane (gamma) 2.0 4.0 ND Heptachlor 2.0 4.0 ND Heptachlor epoxide 2.0 4.0 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 2.0 4.0 ND beta-Hexachlorocyclohexane (Betta-BHC) 2.0 4.0 ND delta-Hexachlorocyclohexane (Delta-BHC)	_	MDL	PQL	Results					
Chlordane (alpha) 2.0 4.0 ND 4,4'-DDD (DDD) 2.0 4.0 ND 4,4'-DDE (DDE) 2.0 4.0 ND 4,4'-DDT (DDT) 2.0 4.0 ND Dieldrin 2.0 4.0 ND Endosulfan 1 2.0 4.0 ND Endosulfan 11 2.0 4.0 ND Endrin sulfate 2.0 4.0 ND Endrin 2.0 4.0 ND Endrin aldehyde 2.0 4.0 ND Endrin ketone 2.0 4.0 ND Chlordane (gamma) 2.0 4.0 ND Heptachlor 2.0 4.0 ND Heptachlor epoxide 2.0 4.0 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 2.0 4.0 ND beta-Hexachlorocyclohexane (Betta-BHC) 2.0 4.0 ND delta-Hexachlorocyclohexane (Delta-BHC) 2.0 4.0 ND gamma-Hexachlorocyclohexane		2.0	4.0	ND					
4,4'-DDD (DDD) 2.0 4.0 ND	Chlordane (Total)	2.0	4.0	ND					
4,4'-DDE (DDE) 2.0 4.0 ND	Chlordane (alpha)	2.0	4.0	ND					
4,4'-DDT (DDT) 2.0 4.0 ND Dieldrin 2.0 4.0 ND Endosulfan 1 2.0 4.0 ND Endosulfan 11 2.0 4.0 ND Endosulfan sulfate 2.0 4.0 ND Endrin 2.0 4.0 ND Endrin aldehyde 2.0 4.0 ND Endrin ketone 2.0 4.0 ND Chlordane (gamma) 2.0 4.0 ND Heptachlor 2.0 4.0 ND Heptachlor epoxide 2.0 4.0 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 2.0 4.0 ND beta-Hexachlorocyclohexane (Betta-BHC) 2.0 4.0 ND delta-Hexachlorocyclohexane (Delta-BHC) 2.0 4.0 ND gamma-Hexachlorocyclohexane 2.0 4.0 ND	4,4'-DDD (DDD)	2.0	4.0	ND					
Dieldrin 2.0 4.0 ND Endosulfan 1 2.0 4.0 ND Endosulfan 1 2.0 4.0 ND Endosulfan 11 2.0 4.0 ND Endosulfan sulfate 2.0 4.0 ND Endrin sulfate 2.0 4.0 ND Endrin aldehyde 2.0 4.0 ND Endrin ketone 2.0 4.0 ND Endrin ketone 2.0 4.0 ND Endrin ketone 2.0 4.0 ND Endosulfan (gamma) 2.0 4.0 ND Endosulfan (gamma) 2.0 4.0 ND Endosulfan (gamma) 2.0 4.0 ND Endosulfan (gamma	4,4'-DDE (DDE)	2.0	4.0	ND					
Endosulfan 1 2.0 4.0 ND Image: ND control of the c	4,4'-DDT (DDT)	2.0	4.0	ND					
Endosulfan 11 2.0 4.0 ND Endosulfan sulfate 2.0 4.0 ND Endrin 2.0 4.0 ND Endrin aldehyde 2.0 4.0 ND Endrin ketone 2.0 4.0 ND Chlordane (gamma) 2.0 4.0 ND Heptachlor 2.0 4.0 ND Heptachlor epoxide 2.0 4.0 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 2.0 4.0 ND beta-Hexachlorocyclohexane (Betta-BHC) 2.0 4.0 ND delta-Hexachlorocyclohexane (Delta-BHC) 2.0 4.0 ND gamma-Hexachlorocyclohexane 2.0 4.0 ND	Dieldrin	2.0	4.0	ND					
Endosulfan sulfate 2.0 4.0 ND	Endosulfan 1	2.0	4.0	ND					
Endrin 2.0 4.0 ND Image: ND	Endosulfan 11	2.0	4.0	ND					
Endrin aldehyde 2.0 4.0 ND	Endosulfan sulfate	2.0	4.0	ND					
Endrin ketone 2.0 4.0 ND Chlordane (gamma) 2.0 4.0 ND Heptachlor 2.0 4.0 ND Heptachlor epoxide 2.0 4.0 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 2.0 4.0 ND beta-Hexachlorocyclohexane (Betta-BHC) 2.0 4.0 ND delta-Hexachlorocyclohexane (Delta-BHC) 2.0 4.0 ND gamma-Hexachlorocyclohexane 2.0 4.0 ND	Endrin	2.0	4.0	ND					
Chlordane (gamma) 2.0 4.0 ND Heptachlor 2.0 4.0 ND Heptachlor epoxide 2.0 4.0 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 2.0 4.0 ND beta-Hexachlorocyclohexane (Betta-BHC) 2.0 4.0 ND delta-Hexachlorocyclohexane (Delta-BHC) 2.0 4.0 ND gamma-Hexachlorocyclohexane 2.0 4.0 ND	Endrin aldehyde	2.0	4.0	ND					
Heptachlor 2.0 4.0 ND Heptachlor epoxide 2.0 4.0 ND Heptachlor epoxide 2.0 4.0 ND Heptachlor eyocide 2.0 4.0 ND Heptachlorocyclohexane (Alpha-BHC) 2.0 4.0 ND Heta-Hexachlorocyclohexane (Betta-BHC) 2.0 4.0 ND Heta-Hexachlorocyclohexane (Delta-BHC) 2.0 4.0 ND Hexachlorocyclohexane (Delta-BHC) 2.0 4.0 ND Hexachlorocyclohexane 2.0 4.0 ND Hexachlorocyclohexane Hexachlorocyclohexane 2.0 Hexachlorocyclohexane 4.0 ND Hexachlor	Endrin ketone	2.0	4.0	ND					
Heptachlor epoxide 2.0 4.0 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 2.0 4.0 ND beta-Hexachlorocyclohexane (Betta-BHC) 2.0 4.0 ND delta-Hexachlorocyclohexane (Delta-BHC) 2.0 4.0 ND agamma-Hexachlorocyclohexane 2.0 4.0 ND	Chlordane (gamma)	2.0	4.0	ND					
alpha-Hexachlorocyclohexane (Alpha-BHC) beta-Hexachlorocyclohexane (Betta-BHC) delta-Hexachlorocyclohexane (Delta-BHC) gamma-Hexachlorocyclohexane 2.0 4.0 ND ND gamma-Hexachlorocyclohexane 2.0 4.0 ND	Heptachlor	2.0	4.0	ND					
beta-Hexachlorocyclohexane (Betta-BHC) delta-Hexachlorocyclohexane (Delta-BHC) gamma-Hexachlorocyclohexane 2.0 4.0 ND Sumble Sumb	Heptachlor epoxide	2.0	4.0	ND					
delta-Hexachlorocyclohexane (Delta-BHC) gamma-Hexachlorocyclohexane 2.0 4.0 ND ND	alpha-Hexachlorocyclohexane (Alpha-BHC)	2.0	4.0	ND					
gamma-Hexachlorocyclohexane 2.0 4.0 ND	beta-Hexachlorocyclohexane (Betta-BHC)	2.0	4.0	ND					
	delta-Hexachlorocyclohexane (Delta-BHC)	2.0	4.0	ND					
(C. PHC I. 1.)	gamma-Hexachlorocyclohexane	2.0	4.0	ND					
(Gamma-BHC, Lindane)	(Gamma-BHC, Lindane)								
Methoxychlor 10 20 ND	Methoxychlor	10	20	ND					
Toxaphene 170 340 ND	Toxaphene	170	340	ND					

Comment(s):

85199.11: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 21

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Our Lab I.D.		85199.11		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	78.0		
Tetrachloro-m-xylene	30-150	74.6		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 22

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111416EB2

Our Lab I.D.			85199.12		
Client Sample I.D.			SB93-0.5		
Date Sampled			11/06/2016		
Date Prepared			11/14/2016		
Preparation Method			3550B		
Date Analyzed			11/16/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			5		
Analytes	MDL	PQL	Results		
Aldrin	5	10	ND		
Chlordane (Total)	5	10	ND		
Chlordane (alpha)	5	10	ND		
4,4'-DDD (DDD)	5	10	ND		
4,4'-DDE (DDE)	5	10	ND		
4,4'-DDT (DDT)	5	10	ND		
Dieldrin	5	10	ND		
Endosulfan 1	5	10	ND		
Endosulfan 11	5	10	ND		
Endosulfan sulfate	5	10	ND		
Endrin	5	10	ND		
Endrin aldehyde	5	10	ND		
Endrin ketone	5	10	ND		
Chlordane (gamma)	5	10	ND		
Heptachlor	5	10	ND		
Heptachlor epoxide	5	10	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	5	10	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	5	10	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	5	10	ND		
gamma-Hexachlorocyclohexane	5	10	ND		
(Gamma-BHC, Lindane)					
Methoxychlor	25	50	ND		
Toxaphene	425	850	ND		

Comment(s):

85199.12: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 23

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Our Lab I.D.		85199.12		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	111		
Tetrachloro-m-xylene	30-150	63.4		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: **24**

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111416EB2

Our Lab I.D. 85199.13 Client Sample I.D. SB94-0.5 Date Sampled 11/06/2016 Date Prepared 11/14/2016 Preparation Method 3550B Date Analyzed 11/16/2016 Matrix Soil Units ug/Kg Dilution Factor 10 Analytes Results **PQL** MDL Aldrin 10 20 ND Chlordane (Total) 10 20 98.4 Chlordane (alpha) 10 20 45.5 4,4'-DDD (DDD) 10 20 ND 10 20 ND 4,4'-DDE (DDE) 10 16.4J 4,4'-DDT (DDT) 20 10 20 ND Dieldrin 10 20 ND Endosulfan 1 10 20 ND Endosulfan 11 Endosulfan sulfate 10 20 ND 10 Endrin 20 ND 10 Endrin aldehyde 20 ND Endrin ketone 10 20 ND Chlordane (gamma) 10 20 52.9 Heptachlor 10 20 ND Heptachlor epoxide 10 20 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 10 20 ND beta-Hexachlorocyclohexane (Betta-BHC) 10 20 ND 10 delta-Hexachlorocyclohexane (Delta-BHC) 20 ND 10 20 ND gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane) Methoxychlor 50 100 ND 850 1700 Toxaphene ND

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 25

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Our Lab I.D.		85199.13		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	67.4		
Tetrachloro-m-xylene	30-150	69.4		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: **26**

AET	L Job	Number	Submitted	Client

85199

11/08/2016

CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111416EB2

Our Lab I.D. 85199.14 Client Sample I.D. SB95-0.5 Date Sampled 11/06/2016 Date Prepared 11/14/2016 Preparation Method 3550B Date Analyzed 11/16/2016 Matrix Soil Units ug/Kg Dilution Factor 5 Analytes Results MDL **PQL** Aldrin 5 10 ND 5 10 ND Chlordane (Total) 5 Chlordane (alpha) 10 ND 4,4'-DDD (DDD) 5 10 ND 5 10 ND 4,4'-DDE (DDE) 5 4,4'-DDT (DDT) 10 ND 5 10 ND Dieldrin 5 10 ND Endosulfan 1 5 10 ND Endosulfan 11 Endosulfan sulfate 5 10 ND Endrin 5 10 ND Endrin aldehyde 5 10 ND Endrin ketone 5 10 ND Chlordane (gamma) 5 10 ND Heptachlor 5 10 ND Heptachlor epoxide 5 10 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 5 10 ND 5 beta-Hexachlorocyclohexane (Betta-BHC) 10 ND 5 10 ND delta-Hexachlorocyclohexane (Delta-BHC) 5 10 ND gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane) Methoxychlor 25 50 ND 425 850 Toxaphene ND

Comment(s):

85199.14: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 27

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Our Lab I.D.		85199.14		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	66.8		
Tetrachloro-m-xylene	30-150	71.2		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 28

AETL Job Number Submitted Client
85199 11/08/2016 CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111416EB2

Our Lab I.D.			85199.15	85199.16		
Client Sample I.D.			SB96-0.5	SB97-0.5		
Date Sampled			11/06/2016	11/06/2016		
Date Prepared			11/14/2016	11/14/2016		
Preparation Method			3550B	3550B		
Date Analyzed				11/16/2016		
Matrix			Soil	Soil		
Units			ug/Kg	ug/Kg		
Dilution Factor			10	10		
Analytes	MDL	PQL	Results	Results		
Aldrin	10	20	ND	ND		
Chlordane (Total)	10	20	ND	ND		
Chlordane (alpha)	10	20	ND	ND		
4,4'-DDD (DDD)	10	20	ND	ND		
4,4'-DDE (DDE)	10	20	ND	ND		
4,4'-DDT (DDT)	10	20	ND	ND		
Dieldrin	10	20	ND	ND		
Endosulfan 1	10	20	ND	ND		
Endosulfan 11	10	20	ND	ND		
Endosulfan sulfate	10	20	ND	ND		
Endrin	10	20	ND	ND		
Endrin aldehyde	10	20	ND	ND		
Endrin ketone	10	20	ND	ND		
Chlordane (gamma)	10	20	ND	ND		
Heptachlor	10	20	ND	ND		
Heptachlor epoxide	10	20	ND	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	10	20	ND	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	10	20	ND	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	10	20	ND	ND		
gamma-Hexachlorocyclohexane	10	20	ND	ND		
(Gamma-BHC, Lindane)						
Methoxychlor	50	100	ND	ND		
Toxaphene	850	1700	ND	ND		

Comment(s):

85199.15: Analyzed under dilution due to matrix interference 85199.16: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 29

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Our Lab I.D.		85199.15	85199.16		
Surrogates	%Rec.Limit	% Rec.	% Rec.		
Decachlorobiphenyl	30-150	115	102		
Tetrachloro-m-xylene	30-150	88.8	95.4		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: **30**

AETL	Job	Number	Submit	ted	Client
85199		11/08/	/2016	CSC-LB	

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111416EB2

Our Lab I.D. 85199.17 Client Sample I.D. SB98-0.5 Date Sampled 11/05/2016 Date Prepared 11/14/2016 Preparation Method 3550B Date Analyzed 11/16/2016 Matrix Soil Units ug/Kg Dilution Factor 5 Analytes Results MDL **PQL** Aldrin 5 10 ND Chlordane (Total) 5 10 18.0 5 Chlordane (alpha) 10 8.31J 4,4'-DDD (DDD) 5 10 ND 5 10 ND 4,4'-DDE (DDE) 5 4,4'-DDT (DDT) 10 ND 5 10 ND Dieldrin 5 10 ND Endosulfan 1 5 10 ND Endosulfan 11 Endosulfan sulfate 5 10 ND Endrin 5 10 ND Endrin aldehyde 5 10 ND Endrin ketone 5 10 ND Chlordane (gamma) 5 10 9.73J Heptachlor 5 10 ND Heptachlor epoxide 5 10 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 5 10 ND 5 beta-Hexachlorocyclohexane (Betta-BHC) 10 ND 5 delta-Hexachlorocyclohexane (Delta-BHC) 10 ND 5 10 ND gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane) Methoxychlor 25 50 ND 425 850 Toxaphene ND

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 31

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Our Lab I.D.		85199.17		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	67.6		
Tetrachloro-m-xylene	30-150	89.2		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: **32**

	AETL Job	Number	Submitted	Client
I	85199		11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111416EB2

Our Lab I.D. 85199.18 Client Sample I.D. SB99-0.5 Date Sampled 11/05/2016 Date Prepared 11/14/2016 Preparation Method 3550B Date Analyzed 11/16/2016 Matrix Soil Units ug/Kg Dilution Factor 10 Analytes Results **PQL** MDL Aldrin 10 20 ND Chlordane (Total) 10 20 ND Chlordane (alpha) 10 20 ND 4,4'-DDD (DDD) 10 20 ND 10 20 ND 4,4'-DDE (DDE) 10 4,4'-DDT (DDT) 20 ND 10 20 ND Dieldrin 10 20 ND Endosulfan 1 10 20 ND Endosulfan 11 Endosulfan sulfate 10 20 ND 10 Endrin 20 ND 10 Endrin aldehyde 20 ND Endrin ketone 10 20 ND Chlordane (gamma) 10 20 ND Heptachlor 10 20 ND Heptachlor epoxide 10 20 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 10 20 ND beta-Hexachlorocyclohexane (Betta-BHC) 10 20 ND 10 delta-Hexachlorocyclohexane (Delta-BHC) 20 ND 10 20 ND gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane) Methoxychlor 50 100 ND 1700 Toxaphene 850 ND

Comment(s):

85199.18: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 33

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Our Lab I.D.		85199.18		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	94.2		
Tetrachloro-m-xylene	30-150	78.8		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: **34**

AETL	Job	Number	Submitted	Client
	851	99	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 111416EB2

Our Lab I.D.			85199.19	85199.20		
Client Sample I.D.			SB100-0.5	SB101-0.5		
Date Sampled			11/05/2016	11/05/2016		
Date Prepared		11/14/2016	11/14/2016			
Preparation Method	Preparation Method			3550B		
Date Analyzed				11/16/2016		
Matrix			Soil	Soil		
Units			ug/Kg	ug/Kg		
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
Aldrin	1.0	2.0	ND	ND		
Chlordane (Total)	1.0	2.0	16.9	ND		
Chlordane (alpha)	1.0	2.0	8.46	ND		
4,4'-DDD (DDD)	1.0	2.0	1.14J	7.99		
4,4'-DDE (DDE)	1.0	2.0	8.08	213		
4,4'-DDT (DDT)	1.0	2.0	8.20	5.41		
Dieldrin	1.0	2.0	1.62J	ND		
Endosulfan 1	1.0	2.0	ND	ND		
Endosulfan 11	1.0	2.0	ND	ND		
Endosulfan sulfate	1.0	2.0	ND	ND		
Endrin	1.0	2.0	1.89J	ND		
Endrin aldehyde	1.0	2.0	1.66J	ND		
Endrin ketone	1.0	2.0	ND	ND		
Chlordane (gamma)	1.0	2.0	8.81	ND		
Heptachlor	1.0	2.0	ND	ND		
Heptachlor epoxide	1.0	2.0	ND	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	1.0	2.0	ND	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	1.0	2.0	ND	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	1.0	2.0	ND	ND		
gamma-Hexachlorocyclohexane	1.0	2.0	ND	ND		
(Gamma-BHC, Lindane)						
Methoxychlor	5.0	10.0	ND	ND		
Toxaphene	85.0	170.0	ND	ND		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 35

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Our Lab I.D.		85199.19	85199.20		
Surrogates	%Rec.Limit	% Rec.	% Rec.		
Decachlorobiphenyl	30-150	85.2	83.2		
Tetrachloro-m-xylene	30-150	88.2	94.6		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: **36**

AETL	Job	Number	Submitted	Client

85199

11/08/2016

CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 111416EB3

Our Lab I.D. Method Blank 85199.21								
Client Sample I.D.			Wictiod Blank	SB102-0.5				
	Date Sampled			11/05/2016				
Date Prepared		11/14/2016						
Preparation Method		3550B	3550B					
Date Analyzed			11/16/2016					
Matrix			Soil	Soil				
Units			ug/Kg	ug/Kg				
Dilution Factor			1	1				
Analytes	MDL	PQL	Results	Results				
Aldrin	1.0	2.0	ND	ND				
Chlordane (Total)	1.0	2.0	ND	ND				
Chlordane (alpha)	1.0	2.0	ND	ND				
4,4'-DDD (DDD)	1.0	2.0	ND	ND				
4,4'-DDE (DDE)	1.0	2.0	ND	ND				
4,4'-DDT (DDT)	1.0	2.0	ND	ND				
Dieldrin	1.0	2.0	ND ND	ND				
	1.0	2.0	ND ND	ND				
Endosulfan 1								
Endosulfan 11	1.0	2.0	ND	ND				
Endosulfan sulfate	1.0	2.0	ND	ND				
Endrin	1.0	2.0	ND	ND				
Endrin aldehyde	1.0	2.0	ND	ND				
Endrin ketone	1.0	2.0	ND	ND				
Chlordane (gamma)	1.0	2.0	ND	ND				
Heptachlor	1.0	2.0	ND	ND				
Heptachlor epoxide	1.0	2.0	ND	ND				
alpha-Hexachlorocyclohexane (Alpha-BHC)	1.0	2.0	ND	ND				
beta-Hexachlorocyclohexane (Betta-BHC)	1.0	2.0	ND	ND				
delta-Hexachlorocyclohexane (Delta-BHC)	1.0	2.0	ND	ND				
gamma-Hexachlorocyclohexane	1.0	2.0	ND	ND				
(Gamma-BHC, Lindane)								
Methoxychlor	5.0	10.0	ND	ND				
Toxaphene	85.0	170.0	ND	ND				

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 37

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Our Lab I.D.		Method Blank	85199.21		
Surrogates	%Rec.Limit	% Rec.	% Rec.		
Decachlorobiphenyl	30-150	86.0	92.0		
Tetrachloro-m-xylene	30-150	100	104		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: **38**

	AETL Jo	b Number	Submitted	Client
ĺ	85	199	11/08/2016	CCC_T.B

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111416EB3

Our Lab I.D.			85199.22		
Client Sample I.D.			SB103-0.5		
Date Sampled	Date Sampled		11/05/2016		
Date Prepared			11/14/2016		
Preparation Method			3550B		
Date Analyzed			11/16/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			10		
Analytes	MDL	PQL	Results		
Aldrin	10	20	ND		
Chlordane (Total)	10	20	ND		
Chlordane (alpha)	10	20	ND		
4,4'-DDD (DDD)	10	20	ND		
4,4'-DDE (DDE)	10	20	ND		
4,4'-DDT (DDT)	10	20	ND		
Dieldrin	10	20	ND		
Endosulfan 1	10	20	ND		
Endosulfan 11	10	20	ND		
Endosulfan sulfate	10	20	ND		
Endrin	10	20	ND		
Endrin aldehyde	10	20	ND		
Endrin ketone	10	20	ND		
Chlordane (gamma)	10	20	ND		
Heptachlor	10	20	ND		
Heptachlor epoxide	10	20	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	10	20	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	10	20	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	10	20	ND		
gamma-Hexachlorocyclohexane	10	20	ND		
(Gamma-BHC, Lindane)					
Methoxychlor	50	100	ND		
Toxaphene	850	1700	ND		

Comment(s):

85199.22: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 39

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Our Lab I.D.		85199.22		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	147		
Tetrachloro-m-xylene	30-150	115		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: **40**

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 111416EB3

Our Lab I.D.			85199.23	85199.24		
Client Sample I.D.			SB104-0.5	SB105-0.5		
Date Sampled			11/05/2016	11/05/2016		
Date Prepared			11/14/2016	11/14/2016		
Preparation Method			3550B	3550B		
Date Analyzed				11/16/2016		
Matrix			Soil	Soil		
Units			ug/Kg	ug/Kg		
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
Aldrin	1.0	2.0	ND	ND		
Chlordane (Total)	1.0	2.0	ND	232		
Chlordane (alpha)	1.0	2.0	ND	116		
4,4'-DDD (DDD)	1.0	2.0	ND	2.29		
4,4'-DDE (DDE)	1.0	2.0	ND	3.12		
4,4'-DDT (DDT)	1.0	2.0	ND	4.87		
Dieldrin	1.0	2.0	ND	3.42		
Endosulfan 1	1.0	2.0	ND	ND		
Endosulfan 11	1.0	2.0	ND	ND		
Endosulfan sulfate	1.0	2.0	ND	ND		
Endrin	1.0	2.0	ND	ND		
Endrin aldehyde	1.0	2.0	ND	ND		
Endrin ketone	1.0	2.0	ND	ND		
Chlordane (gamma)	1.0	2.0	ND	116		
Heptachlor	1.0	2.0	ND	ND		
Heptachlor epoxide	1.0	2.0	ND	17.5		
alpha-Hexachlorocyclohexane (Alpha-BHC)	1.0	2.0	ND	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	1.0	2.0	ND	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	1.0	2.0	ND	ND		
gamma-Hexachlorocyclohexane	1.0	2.0	ND	ND		
(Gamma-BHC, Lindane)						
Methoxychlor	5.0	10.0	ND	ND		
Toxaphene	85.0	170.0	ND	ND		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: **41**

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Our Lab I.D.		85199.23	85199.24		
Surrogates	%Rec.Limit	% Rec.	% Rec.		
Decachlorobiphenyl	30-150	100	109		
Tetrachloro-m-xylene	30-150	101	99.8		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 42

AETL	Job Numb	er Submitted	Client
	85199	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111416EB3

Our Lab I.D.			85199.25		
Client Sample I.D.			SB106-0.5		
Date Sampled	Date Sampled		11/05/2016		
Date Prepared			11/14/2016		
Preparation Method			3550B		
Date Analyzed			11/16/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			5		
Analytes	MDL	PQL	Results		
Aldrin	5	10	ND		
Chlordane (Total)	5	10	ND		
Chlordane (alpha)	5	10	ND		
4,4'-DDD (DDD)	5	10	ND		
4,4'-DDE (DDE)	5	10	ND		
4,4'-DDT (DDT)	5	10	ND		
Dieldrin	5	10	ND		
Endosulfan 1	5	10	ND		
Endosulfan 11	5	10	ND		
Endosulfan sulfate	5	10	ND		
Endrin	5	10	ND		
Endrin aldehyde	5	10	ND		
Endrin ketone	5	10	ND		
Chlordane (gamma)	5	10	ND		
Heptachlor	5	10	ND		
Heptachlor epoxide	5	10	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	5	10	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	5	10	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	5	10	ND		
gamma-Hexachlorocyclohexane	5	10	ND		
(Gamma-BHC, Lindane)					
Methoxychlor	25	50	ND		
Toxaphene	425	850	ND		

Comment(s):

85199.25: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 43

AETL Job Number	Submitted	Client		
85199	11/08/2016	CSC-LB		

Our Lab I.D.		85199.25		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	106		
Tetrachloro-m-xylene	30-150	91.6		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: **44**

	AETL	Job	Number	Submitted	Client
Ī		851	99	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 111416EB3

Our Lab I.D.			85199.26	85199.27		
Client Sample I.D.			SB107-0.5	SB108-0.5		
Date Sampled			11/05/2016	11/05/2016		
Date Prepared			11/14/2016	11/14/2016		
Preparation Method			3550B	3550B		
Date Analyzed				11/16/2016		
Matrix			Soil	Soil		
Units			ug/Kg	ug/Kg		
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
Aldrin	1.0	2.0	ND	ND		
Chlordane (Total)	1.0	2.0	ND	7.71		
Chlordane (alpha)	1.0	2.0	ND	4.03		
4,4'-DDD (DDD)	1.0	2.0	ND	ND		
4,4'-DDE (DDE)	1.0	2.0	6.82	34.8		
4,4'-DDT (DDT)	1.0	2.0	1.44J	1.79J		
Dieldrin	1.0	2.0	3.89	2.14		
Endosulfan 1	1.0	2.0	ND	ND		
Endosulfan 11	1.0	2.0	ND	ND		
Endosulfan sulfate	1.0	2.0	ND	ND		
Endrin	1.0	2.0	ND	ND		
Endrin aldehyde	1.0	2.0	ND	ND		
Endrin ketone	1.0	2.0	ND	ND		
Chlordane (gamma)	1.0	2.0	ND	3.68		
Heptachlor	1.0	2.0	ND	ND		
Heptachlor epoxide	1.0	2.0	ND	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	1.0	2.0	ND	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	1.0	2.0	ND	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	1.0	2.0	ND	ND		
gamma-Hexachlorocyclohexane	1.0	2.0	ND	ND		
(Gamma-BHC, Lindane)						
Methoxychlor	5.0	10.0	ND	ND		
Toxaphene	85.0	170.0	ND	ND		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: **45**

AETL Job Number	Submitted	Client		
85199	11/08/2016	CSC-LB		

Our Lab I.D.		85199.26	85199.27		
Surrogates	%Rec.Limit	% Rec.	% Rec.		
Decachlorobiphenyl	30-150	74.6	104		
Tetrachloro-m-xylene	30-150	70.6	105		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 46

AETL	Job	Number	Submitted	Client

85199

11/08/2016

CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111416EB3

Our Lab I.D. 85199.28 Client Sample I.D. SB109-0.5 Date Sampled 11/05/2016 Date Prepared 11/14/2016 Preparation Method 3550B Date Analyzed 11/16/2016 Matrix Soil Units ug/Kg **Dilution Factor** 5 Analytes Results MDL **PQL** Aldrin 5 10 ND 5 10 ND Chlordane (Total) 5 Chlordane (alpha) 10 ND 4,4'-DDD (DDD) 5 10 ND 5 10 ND 4,4'-DDE (DDE) 5 4,4'-DDT (DDT) 10 ND 5 10 ND Dieldrin 5 10 ND Endosulfan 1 5 10 ND Endosulfan 11 Endosulfan sulfate 5 10 ND Endrin 5 10 ND Endrin aldehyde 5 10 ND Endrin ketone 5 10 ND Chlordane (gamma) 5 10 ND Heptachlor 5 10 ND Heptachlor epoxide 5 10 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 5 10 ND 5 beta-Hexachlorocyclohexane (Betta-BHC) 10 ND 5 10 ND delta-Hexachlorocyclohexane (Delta-BHC) 5 10 ND gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane) Methoxychlor 25 50 ND 425 850 Toxaphene ND

Comment(s):

85199.28: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 47

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Our Lab I.D.		85199.28		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	140		
Tetrachloro-m-xylene	30-150	94.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 48

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 111416EB3

Our Lab I.D. 85199.29 85199.30 85199.31 Client Sample I.D. SB038-0.5 SB044-0.5 SB045-0.5 11/05/2016 11/05/2016 11/05/2016 Date Sampled Date Prepared 11/14/2016 11/14/2016 11/14/2016 Preparation Method 3550B 3550B 3550B Date Analyzed 11/16/2016 11/16/2016 11/16/2016 Matrix Soil Soil Soil Units ug/Kg ug/Kg ug/Kg Dilution Factor Analytes Results Results Results **PQL** MDL Aldrin 1.0 2.0 ND ND ND 2.09 1.0 2.0 ND ND Chlordane (Total) Chlordane (alpha) 1.0 2.0 ND ND ND 4,4'-DDD (DDD) 1.0 2.0 ND ND ND 2.0 4,4'-DDE (DDE) 1.0 1.47J ND ND 2.0 4,4'-DDT (DDT) 1.0 ND ND ND 2.0 1.0 ND ND ND Dieldrin 1.0 2.0 ND ND ND Endosulfan 1 2.0 ND ND ND Endosulfan 11 1.0 1.0 2.0 ND ND ND Endosulfan sulfate Endrin 1.0 2.0 ND ND ND Endrin aldehyde 1.0 2.0 ND ND ND 1.0 2.0 ND ND ND Endrin ketone 1.0 2.0 1.38J ND ND Chlordane (gamma) 1.0 2.0 ND ND ND Heptachlor Heptachlor epoxide 1.0 2.0 ND ND ND alpha-Hexachlorocyclohexane (Alpha-BHC) 1.0 2.0 ND ND ND beta-Hexachlorocyclohexane (Betta-BHC) 1.0 2.0 ND ND ND 1.0 2.0 ND ND ND delta-Hexachlorocyclohexane (Delta-BHC) 1.0 2.0 gamma-Hexachlorocyclohexane ND ND ND (Gamma-BHC, Lindane) Methoxychlor 5.0 10.0 ND ND ND 85.0 170.0 Toxaphene ND ND ND

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 49

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Our Lab I.D.		85199.29	85199.30	85199.31	
Surrogates	%Rec.Limit	% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150	116	116	115	
Tetrachloro-m-xylene	30-150	83.8	93.8	95.0	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 50

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 111416EB2; Dup or Spiked Sample: 85199.03; LCS: Clean Sand; QC Prepared: 11/14/2016; MS Analyzed: 11/16/2016; LCS Analyzed: 11/15/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aldrin	0.00	20.0	10.8	54.0	20.0	12.5	62.5	14.6	40-150	<40
4,4'-DDT (DDT)	0.00	50.0	27.9	55.8	50.0	30.5	61.0	8.90	40-150	<40
Dieldrin	0.00	50.0	26.4	52.8	50.0	30.2	60.4	13.4	40-150	<40
Endrin	0.00	50.0	53.2	106	50.0	61.3	123	14.8	40-150	<40
Heptachlor	0.00	20.0	11.3	56.5	20.0	13.4	67.0	17.0	40-150	<40
gamma-Hexachlorocyclohexane	0.00	20.0	14.6	73.0	20.0	13.3	66.5	9.32	40-150	<40
(Gamma-BHC, Lindane)										
Surrogates										
Decachlorobiphenyl	0.00	50.0	30.8	61.6	50.0	33.3	66.6	8.12	30-150	<40
Tetrachloro-m-xylene	0.00	50.0	39.6	79.2	50.0	45.6	91.2	15.2	30-150	<40

QC Batch No: 111416EB2; Dup or Spiked Sample: 85199.03; LCS: Clean Sand; QC Prepared: 11/14/2016; MS Analyzed: 11/16/2016; LCS Analyzed: 11/15/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aldrin	20.0	13.7	68.5	20.0	13.5	67.5	1.47	50-150	<40	
4,4'-DDT (DDT)	50.0	30.3	60.6	50.0	30.3	60.6	<1	50-150	<40	
Dieldrin	50.0	34.5	69.0	50.0	35.1	70.2	1.72	50-150	<40	
Endrin	50.0	61.8	124	50.0	62.4	125	<1	50-150	<40	
Heptachlor	20.0	14.7	73.5	20.0	14.6	73.0	<1	50-150	<40	
gamma-Hexachlorocyclohexane	20.0	14.7	73.5	20.0	14.5	72.5	1.37	50-150	<40	
(Gamma-BHC, Lindane)										
Surrogates										
Decachlorobiphenyl	50.0	37.3	74.6	50.0	35.8	71.6	4.02	30-150	<40	
Tetrachloro-m-xylene	50.0	47.6	95.2	50.0	43.8	87.6	7.98	30-150	<40	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 51

AETL Job Number	Submitted	Client
85199	11/08/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 111416EB3; Dup or Spiked Sample: 85257.43; LCS: Clean Sand; QC Prepared: 11/14/2016; QC Analyzed: 11/16/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aldrin	0.00	20.0	16.5	82.5	20.0	15.0	75.0	9.52	40-150	<40
4,4'-DDT (DDT)	57.4	50.0	76.5 #	38.2	50.0	68.2 #	21.6	55.5	40-150	<40
Dieldrin	11.4	50.0	55.4	88.0	50.0	49.2	75.6	15.2	40-150	<40
Endrin	4.53	50.0	79.5	150	50.0	72.5	136	9.79	40-150	<40
Heptachlor	0.00	20.0	18.9	94.5	20.0	16.5	82.5	13.6	40-150	<40
gamma-Hexachlorocyclohexane	0.00	20.0	17.7	88.5	20.0	16.7	83.5	5.81	40-150	<40
(Gamma-BHC, Lindane)										
Surrogates										
Decachlorobiphenyl	0.00	50.0	67.7	135	50.0	55.8	112	17.0	30-150	<40
Tetrachloro-m-xylene	0.00	50.0	49.1	98.2	50.0	50.2	100	1.83	30-150	<40

QC Batch No: 111416EB3; Dup or Spiked Sample: 85257.43; LCS: Clean Sand; QC Prepared: 11/14/2016; QC Analyzed: 11/16/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aldrin	20.0	13.0	65.0	20.0	12.4	62.0	4.72	50-150	<40	
4,4'-DDT (DDT)	50.0	26.8	53.6	50.0	25.1	50.2	6.55	50-150	<40	
Dieldrin	50.0	33.7	67.4	50.0	30.4	60.8	10.3	50-150	<40	
Endrin	50.0	66.2	132	50.0	52.3	105	22.8	50-150	<40	
Heptachlor	20.0	13.6	68.0	20.0	12.7	63.5	6.84	50-150	<40	
gamma-Hexachlorocyclohexane	20.0	13.7	68.5	20.0	12.9	64.5	6.02	50-150	<40	
(Gamma-BHC, Lindane)										
Surrogates										
Decachlorobiphenyl	50.0	42.7	85.4	50.0	34.8	69.6	18.5	30-150	<40	
Tetrachloro-m-xylene	50.0	46.1	92.2	50.0	46.2	92.4	<1	30-150	<40	

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

*: In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected. However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attention: Aaron Garrett

Number of Pages 45

Date Received 11/22/2016 Date Reported 12/07/2016

Job Number	Order Date	Client
85425	11/22/2016	CSC-LB

Project ID: 611089

Enclosed please find results of analyses of 30 soil samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By:

Approved By: C. Raymana

Cyrus Razmara, Ph.D. Laboratory Director

CHEMTEK Environmental Laboratories Inc. C CHAIN OF CUSTODY RECORD

Email: Chemitekabs@hotmail.com

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)

13554 Larwin Circle, Santa Fe Springe, CA Tel. (562) 926-9848 PAX (562) 926-8324

Invoice CSC

JOD NO. 85425

Page:

27.25.15 35725.15 35725.16	48 85725.15 2 - 49 35725.16	48 85725.15 4 - 49 85725.16 PRINT NAME	-48 85725.16 PRINT NAME ROWL SELATS F	-46 85725-16 -49 85725-16 -49 85725-16 Mode Sergest
257	86-	10 West	- 48 Men	RE PRINT NAME Mort. Savois-P
	PRINT NAME	PRINT NAME Mode	Mort C	REAL MONTH NAME C ROYSIS-P AETC

NOTE: Samples are discarded 30 days after results are reported unless other arrangements are made. *Type: so-Soil GW-Ground Water WW-Waste Water AQ-Aqueous A-Air OT-Other

Distribution: WHITE with report / YELLOW to CHEMTEK / PINK to courier

CC CHAIN OF CUSTODY RECORD CHEMTEK. Environmental Laboratories Inc.

13554 Larwin Circle, Santa Fe Springs, CA 2067

Tel. (562) 926-9848 FAX (562) 926-8324

Email: ChemtekLabs@hotmail.com CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)

Involin CSC

JOD NO.: 85425

Page:

(350) TIME 11/cy16 1330 Illeste 1895 VCD 2065 X X 11 22/16 1/22/W DATE 1202 **CAM 17 Metals** ANALYSIS REQUIRED Sulfide, Cyanide, O&G pH, Conductivity, Turbidity COMPANY NAME COD \ 122 \ BOD \ 1D2 7 45 Th OXYGENATES (8260 B) SHORT **AOC**² (8590 B) ENFF KIL 不同 CARBON CHAIN 8015M TPH D or DRO 8015M TPH G or GRO NO. OF CONT Other Preserved 25425.26 35725 28 35725-30 25725.24 25725-18 85725,22 35425.23 85/25.17 Drp 35725.20 85725.23 85725-19 25425. U 25.527.25 35425 W 48 hr 24 hr Mwh Simisp P.O. No. REMARKS 616 Je 18 18 P F.9. 150 . 55 611084-52 ت EDF Turn Around Time **CUSTOMER INFORMATION** SAMPLED SAMPLED TYPE * DH/Time Email: PROJECT INFORMATION FAX: Swell Ch 611089 SIGNATURE A a (1-11/19 11/20 11/19 RECEIVED FOR LABORATORY BE Sno51 -0.5 Pup 50052-0,5 50057 -0.5 5005 1-0.5 Sign 7 - 0.5 COMPANY NAME: 7 KROST -015 PROJECT CONTACT: 5,0-130 ns or 01- 100 DS PI 8 50059 -0.5 \$ 50060 -0.5 54 0- 540 m Sno- OF cas 3 500 JE -0.5 · . RELINQUISHED BY: SAMPLE ID RELINQUISHED BY: PROJECT NAME SITE ADDRESS: SAMPLED BY: RECEIVED BY: 50 80 ADDRESS: PHONE:

NOTE: Samples are discarded 30 days after results are reported unless other arrangements are made

Distribution: WHITE with report / YELLOW to CHEMTEK / PINK to courier

*TVDA: CO.Soil CW.Cround Water WW.Waste Water AO.Amienie A.Air OT.Other

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attention: Aaron Garrett Project ID: 611089

Date Received 11/22/2016
Date Reported 12/07/2016

Job Number	Order Date	Client
85425	11/22/2016	CSC-LB

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 30 samples with the following specification on 11/22/2016.

Lab ID	Sample ID	Sample Date	Matrix	Quantity Of Containers
85425.01	SB030-0.5	11/20/2016	Soil	1
85425.02	SB030-0.5Dup	11/20/2016	Soil	1
85425.03	SB032-0.5	11/20/2016	Soil	1
85425.04	SB033-0.5	11/20/2016	Soil	1
85425.05	SB034-0.5	11/20/2016	Soil	1
85425.06	SB035-0.5	11/20/2016	Soil	1
85425.07	SB036-0.5	11/20/2016	Soil	1
85425.09	SB037-0.5	11/20/2016	Soil	1
85425.10	SB041-0.5	11/20/2016	Soil	1
85425.12	SB043-0.5	11/19/2016	Soil	1
85425.13	SB043-0.5Dup	11/19/2016	Soil	1
85425.14	SB046-0.5	11/19/2016	Soil	1
85425.15	SB047-0.5	11/19/2016	Soil	1
85425.16	SB048-0.5	11/19/2016	Soil	1
85425.17	SB051-0.5	11/19/2016	Soil	1
85425.18	SB052-0.5	11/19/2016	Soil	1
85425.19	SB053-0.5	11/20/2016	Soil	1
85425.20	SB053-0.5Dup	11/20/2016	Soil	1
85425.21	SB054-0.5	11/20/2016	Soil	1
85425.22	SB058-0.5	11/20/2016	Soil	1
85425.23	SB059-0.5	11/20/2016	Soil	1
85425.24	SB060-0.5	11/20/2016	Soil	1
85425.25	SB061-0.5	11/20/2016	Soil	1
85425.26	SB063-0.5	11/19/2016	Soil	1

Continued

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 B
Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attention: Aaron Garrett Project ID: 611089

Date Received 11/22/2016
Date Reported 12/07/2016

Job Number	Order Date	Client
85425	11/22/2016	CSC-LB

CERTIFICATE OF ANALYSIS CASE NARRATIVE

85425.27	7	SB070-0.5	11/19/2	016	Soil			1	
85425.28	8	SB078-0.5	11/19/2	016	Soil			1	
Me	ethod	^ Submethod		Req 1	Date	Priority	TAT	Units	
(80	081A)			11/29/	2016	2	Normal	ug/Kg	
85425.08	8	SB031-0.5	11/20/2	016	Soil			1	
85425.11	1	SB042-0.5	11/19/2	016	Soil			1	
	. 1 7	A				_ , ,,			
Me	ethod	^ Submethod		Req 1	Date	Priority	TAT	Units	
	081A)	Submethod		11/29/		Priority 2	Normal	ug/Kg	
(80		Submethod			2016				
(80	081A) 082)	SB001-10	11/19/2	11/29/ 11/29/	2016	2	Normal	ug/Kg	
(80	081A) 082) 9		11/19/2 11/19/2	11/29/ 11/29/ 016	/2016 /2016	2	Normal	ug/Kg	
(80 (80 85425.29 85425.30	081A) 082) 9	SB001-10		11/29/ 11/29/ 016	/2016 /2016 Soil Soil	2	Normal	ug/Kg	

The samples were analyzed as specified on the enclosed chain of custody. No analytical non-conformances were encountered.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

	(2		C. Raymana
Checked By:		Approved By:	J

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attn: Aaron Garrett Page: 2

Project ID: 611089

AETL Job Number	Submitted	Client
85425	11/22/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 112316MB2

Our Lab I.D.			Method Blank	85425.01		
Client Sample I.D.				SB030-0.5		
Date Sampled				11/20/2016		
Date Prepared			11/23/2016	11/23/2016		
Preparation Method			3550B	3550B		
Date Analyzed				11/28/2016		
Matrix			Soil	Soil		
Units			ug/Kg	ug/Kg		
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
Aldrin	1.0	2.0	ND	ND		
Chlordane (Total)	1.0	2.0	ND	3.66		
Chlordane (alpha)	1.0	2.0	ND	2.07		
4,4'-DDD (DDD)	1.0	2.0	ND	ND		
4,4'-DDE (DDE)	1.0	2.0	ND	9.91		
4,4'-DDT (DDT)	1.0	2.0	ND	5.97		
Dieldrin	1.0	2.0	ND	4.13		
Endosulfan 1	1.0	2.0	ND	ND		
Endosulfan 11	1.0	2.0	ND	ND		
Endosulfan sulfate	1.0	2.0	ND	ND		
Endrin	1.0	2.0	ND	ND		
Endrin aldehyde	1.0	2.0	ND	ND		
Endrin ketone	1.0	2.0	ND	ND		
Chlordane (gamma)	1.0	2.0	ND	1.59J		
Heptachlor	1.0	2.0	ND	ND		
Heptachlor epoxide	1.0	2.0	ND	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	1.0	2.0	ND	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	1.0	2.0	ND	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	1.0	2.0	ND	ND		
gamma-Hexachlorocyclohexane	1.0	2.0	ND	ND		
(Gamma-BHC, Lindane)						
Methoxychlor	5.0	10.0	ND	ND		
Toxaphene	85.0	170.0	ND	ND		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 3

 Project ID:
 611089
 AETL Job Number
 Submitted
 Client

 85425
 11/22/2016
 CSC-LB

Our Lab I.D.		Method Blank	85425.01		
Surrogates	%Rec.Limit	% Rec.	% Rec.		
Decachlorobiphenyl	30-150	84.0	64.6		
Tetrachloro-m-xylene	30-150	83.2	76.8		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attn: Aaron Garrett Page:

Project ID: 611089

AETL Job Number	Submitted	Client
85425	11/22/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 112316MB2

QC Batch No: 112316MB2							
Our Lab I.D.			85425.02				
Client Sample I.D.			SB030-0.5Du				
			p				
Date Sampled			11/20/2016				
Date Prepared			11/23/2016				
Preparation Method			3550B				
Date Analyzed			11/28/2016				
Matrix			Soil				
Units			ug/Kg				
Dilution Factor			5				
Analytes	MDL	PQL	Results				
Aldrin	5	10	ND				
Chlordane (Total)	5	10	10.6				
Chlordane (alpha)	5	10	6.21J				
4,4'-DDD (DDD)	5	10	ND				
4,4'-DDE (DDE)	5	10	6.72J				
4,4'-DDT (DDT)	5	10	ND				
Dieldrin	5	10	ND				
Endosulfan 1	5	10	ND				
Endosulfan 11	5	10	ND				
Endosulfan sulfate	5	10	ND				
Endrin	5	10	ND				
Endrin aldehyde	5	10	ND				
Endrin ketone	5	10	ND				
Chlordane (gamma)	5	10	ND				
Heptachlor	5	10	ND				
Heptachlor epoxide	5	10	ND				
alpha-Hexachlorocyclohexane (Alpha-BHC)	5	10	ND				
beta-Hexachlorocyclohexane (Betta-BHC)	5	10	ND				
delta-Hexachlorocyclohexane (Delta-BHC)	5	10	ND				
gamma-Hexachlorocyclohexane	5	10	ND				
(Gamma-BHC, Lindane)							
Methoxychlor	25	50	ND				
Toxaphene	425	850	ND				

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 5

 Project ID:
 611089
 AETL Job Number
 Submitted
 Client

 85425
 11/22/2016
 CSC-LB

Our Lab I.D.		85425.02		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	85.6		
Tetrachloro-m-xylene	30-150	86.2		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attn: Aaron Garrett Page: 6

Project ID: 611089

AETL Job Number	Submitted	Client
85425	11/22/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 112316MB2

		QO Daten N	0: 112316WID2			
Our Lab I.D.			85425.03	85425.04		
Client Sample I.D.			SB032-0.5	SB033-0.5		
Date Sampled				11/20/2016		
Date Prepared			11/23/2016	11/23/2016		
Preparation Method			3550B	3550B		
Date Analyzed			11/28/2016	11/28/2016		
Matrix			Soil	Soil		
Units			ug/Kg	ug/Kg		
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
Aldrin	1.0	2.0	ND	ND		
Chlordane (Total)	1.0	2.0	ND	11.4		
Chlordane (alpha)	1.0	2.0	ND	6.76		
4,4'-DDD (DDD)	1.0	2.0	ND	ND		
4,4'-DDE (DDE)	1.0	2.0	1.01J	4.42		
4,4'-DDT (DDT)	1.0	2.0	ND	2.63		
Dieldrin	1.0	2.0	ND	ND		
Endosulfan 1	1.0	2.0	ND	ND		
Endosulfan 11	1.0	2.0	ND	ND		
Endosulfan sulfate	1.0	2.0	ND	ND		
Endrin	1.0	2.0	ND	ND		
Endrin aldehyde	1.0	2.0	ND	ND		
Endrin ketone	1.0	2.0	ND	ND		
Chlordane (gamma)	1.0	2.0	ND	4.62		
Heptachlor	1.0	2.0	ND	ND		
Heptachlor epoxide	1.0	2.0	ND	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	1.0	2.0	ND	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	1.0	2.0	ND	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	1.0	2.0	ND	ND		
gamma-Hexachlorocyclohexane	1.0	2.0	ND	ND		
(Gamma-BHC, Lindane)						
Methoxychlor	5.0	10.0	ND	ND		
Toxaphene	85.0	170.0	ND	ND		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 7

 Project ID:
 611089
 AETL Job Number
 Submitted
 Client

 85425
 11/22/2016
 CSC-LB

Our Lab I.D.		85425.03	85425.04		
Surrogates	%Rec.Limit	% Rec.	% Rec.		
Decachlorobiphenyl	30-150	71.0	77.4		
Tetrachloro-m-xylene	30-150	86.4	87.4		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attn: Aaron Garrett Page: 8

Project ID: 611089

AETL Job Number	Submitted	Client
85425	11/22/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 112316MB2

Our Lab I.D.			85425.05		
Client Sample I.D.			SB034-0.5		
Date Sampled			11/20/2016		
Date Prepared			11/23/2016 3550B		
Preparation Method			11/28/2016		
Date Analyzed Matrix			Soil		
Units					
Dilution Factor			ug/Kg		
Analytes	MDL	PQL	Results		
Aldrin	2.0	4.0	ND		
Chlordane (Total)	2.0	4.0	3.59J		
Chlordane (alpha)	2.0	4.0	ND		
4,4'-DDD (DDD)	2.0	4.0	ND		
4,4'-DDE (DDE)	2.0	4.0	3.44J		
4,4'-DDT (DDT)	2.0	4.0	3.18J		
Dieldrin	2.0	4.0	ND		
Endosulfan 1	2.0	4.0	ND		
Endosulfan 11	2.0	4.0	ND		
Endosulfan sulfate	2.0	4.0	ND		
Endrin	2.0	4.0	ND		
Endrin aldehyde	2.0	4.0	ND		
Endrin ketone	2.0	4.0	ND		
Chlordane (gamma)	2.0	4.0	ND		
Heptachlor	2.0	4.0	ND		
Heptachlor epoxide	2.0	4.0	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	2.0	4.0	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	2.0	4.0	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	2.0	4.0	ND		
gamma-Hexachlorocyclohexane	2.0	4.0	ND		
(Gamma-BHC, Lindane)					
Methoxychlor	10	20	ND		
Toxaphene	170	340	ND		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 9

 Project ID:
 611089
 AETL Job Number
 Submitted
 Client

 85425
 11/22/2016
 CSC-LB

Our Lab I.D.		85425.05		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	63.6		
Tetrachloro-m-xylene	30-150	83.4		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attn: Aaron Garrett Page: 10

Project ID: 611089

AETL Job Number	Submitted	Client
85425	11/22/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 112316MB2

Our Lab I.D.			85425.06	85425.07		
Client Sample I.D.			SB035-0.5	SB036-0.5		
Date Sampled				11/20/2016		
Date Prepared			11/23/2016	11/23/2016		
Preparation Method			3550B	3550B		
	Date Analyzed		ļ	11/28/2016		
Matrix			Soil	Soil		
Units			ug/Kg	ug/Kg		
Dilution Factor			10	10		
Analytes	MDL	PQL	Results	Results		
Aldrin	10	20	ND	ND		
Chlordane (Total)	10	20	ND	ND		
Chlordane (alpha)	10	20	ND	ND		
4,4'-DDD (DDD)	10	20	ND	ND		
4,4'-DDE (DDE)	10	20	ND	ND		
4,4'-DDT (DDT)	10	20	ND	ND		
Dieldrin	10	20	ND	ND		
Endosulfan 1	10	20	ND	ND		
Endosulfan 11	10	20	ND	ND		
Endosulfan sulfate	10	20	ND	ND		
Endrin	10	20	ND	ND		
Endrin aldehyde	10	20	ND	ND		
Endrin ketone	10	20	ND	ND		
Chlordane (gamma)	10	20	ND	ND		
Heptachlor	10	20	ND	ND		
Heptachlor epoxide	10	20	ND	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	10	20	ND	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	10	20	ND	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	10	20	ND	ND		
gamma-Hexachlorocyclohexane	10	20	ND	ND		
(Gamma-BHC, Lindane)						
Methoxychlor	50	100	ND	ND		
Toxaphene	850	1700	ND	ND		

Comment(s):

85425.06: Analyzed under dilution due to matrix interference 85425.07: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 11

 Project ID:
 611089
 AETL Job Number
 Submitted
 Client

 85425
 11/22/2016
 CSC-LB

Our Lab I.D.		85425.06	85425.07		
Surrogates	%Rec.Limit	% Rec.	% Rec.		
Decachlorobiphenyl	30-150	83.0	76.8		
Tetrachloro-m-xylene	30-150	98.0	91.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attn: Aaron Garrett Page: 12

Project ID: 611089

AETL Job Number	Submitted	Client
85425	11/22/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 112316MB2

		QC Datcii i	10: 112316WIDZ		
Our Lab I.D.			85425.08		
Client Sample I.D.			SB031-0.5		
Date Sampled			11/20/2016		
Date Prepared			11/23/2016		
Preparation Method			3550B		
Date Analyzed			11/28/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aldrin	1.0	2.0	ND		
Chlordane (Total)	1.0	2.0	6.98		
Chlordane (alpha)	1.0	2.0	4.03		
4,4'-DDD (DDD)	1.0	2.0	ND		
4,4'-DDE (DDE)	1.0	2.0	8.34		
4,4'-DDT (DDT)	1.0	2.0	14.1		
Dieldrin	1.0	2.0	ND		
Endosulfan 1	1.0	2.0	ND		
Endosulfan 11	1.0	2.0	ND		
Endosulfan sulfate	1.0	2.0	ND		
Endrin	1.0	2.0	ND		
Endrin aldehyde	1.0	2.0	ND		
Endrin ketone	1.0	2.0	ND		
Chlordane (gamma)	1.0	2.0	2.95		
Heptachlor	1.0	2.0	ND		
Heptachlor epoxide	1.0	2.0	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	1.0	2.0	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	1.0	2.0	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	1.0	2.0	ND		
gamma-Hexachlorocyclohexane	1.0	2.0	ND		
(Gamma-BHC, Lindane)					
Methoxychlor	5.0	10.0	ND		
Toxaphene	85.0	170.0	ND		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 13

 Project ID:
 611089
 AETL Job Number
 Submitted
 Client

 85425
 11/22/2016
 CSC-LB

Our Lab I.D.		85425.08		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	67.6		
Tetrachloro-m-xylene	30-150	90.4		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attn: Aaron Garrett Page: **14**

Project ID: 611089

AETL Job Number	Submitted	Client
85425	11/22/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 112316MB2

Our Lab I.D. 85425.09 Client Sample I.D. SB037-0.5 Date Sampled 11/20/2016 Date Prepared 11/23/2016 Preparation Method 3550B Date Analyzed 11/28/2016 Matrix Soil Units ug/Kg Dilution Factor 10 Analytes Results **PQL** MDL Aldrin 10 20 ND Chlordane (Total) 10 20 ND Chlordane (alpha) 10 20 ND 4,4'-DDD (DDD) 10 20 ND 10 20 ND 4,4'-DDE (DDE) 10 4,4'-DDT (DDT) 20 ND 10 20 ND Dieldrin 10 20 ND Endosulfan 1 10 20 ND Endosulfan 11 Endosulfan sulfate 10 20 ND 10 Endrin 20 ND 10 Endrin aldehyde 20 ND Endrin ketone 10 20 ND Chlordane (gamma) 10 20 ND Heptachlor 10 20 ND Heptachlor epoxide 10 20 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 10 20 ND beta-Hexachlorocyclohexane (Betta-BHC) 10 20 ND 10 delta-Hexachlorocyclohexane (Delta-BHC) 20 ND 10 20 ND gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane) Methoxychlor 50 100 ND 1700 850 Toxaphene ND

Comment(s):

85425.09: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 15

 Project ID:
 611089
 AETL Job Number
 Submitted
 Client

 85425
 11/22/2016
 CSC-LB

Our Lab I.D.		85425.09		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	121		
Tetrachloro-m-xylene	30-150	103		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attn: Aaron Garrett Page: 16

Project ID: 611089

AETL Job Number	Submitted	Client
85425	11/22/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 112316MB2

		QC Daten i	10: 112316WID2		
Our Lab I.D.			85425.10		
Client Sample I.D.			SB041-0.5		
Date Sampled			11/20/2016		
Date Prepared			11/23/2016		
Preparation Method			3550B		
Date Analyzed			11/28/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			2		
Analytes	MDL	PQL	Results		
Aldrin	2.0	4.0	ND		
Chlordane (Total)	2.0	4.0	18.1		
Chlordane (alpha)	2.0	4.0	10.1		
4,4'-DDD (DDD)	2.0	4.0	3.36Ј		
4,4'-DDE (DDE)	2.0	4.0	30.0		
4,4'-DDT (DDT)	2.0	4.0	52.4		
Dieldrin	2.0	4.0	ND		
Endosulfan 1	2.0	4.0	ND		
Endosulfan 11	2.0	4.0	ND		
Endosulfan sulfate	2.0	4.0	ND		
Endrin	2.0	4.0	ND		
Endrin aldehyde	2.0	4.0	ND		
Endrin ketone	2.0	4.0	ND		
Chlordane (gamma)	2.0	4.0	8.03		
Heptachlor	2.0	4.0	ND		
Heptachlor epoxide	2.0	4.0	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	2.0	4.0	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	2.0	4.0	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	2.0	4.0	ND		
gamma-Hexachlorocyclohexane	2.0	4.0	ND		
(Gamma-BHC, Lindane)					
Methoxychlor	10	20	ND		
Toxaphene	170	340	ND		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 17

 Project ID:
 611089
 AETL Job Number
 Submitted
 Client

 85425
 11/22/2016
 CSC-LB

Our Lab I.D.		85425.10		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	65.4		
Tetrachloro-m-xylene	30-150	89.2		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attn: Aaron Garrett Page: 18

Project ID: 611089

AETL Job Number	Submitted	Client
85425	11/22/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 112316MB2

Our Lab I.D.			85425.11	85425.12	85425.13	85425.14	85425.15
Client Sample I.D.			SB042-0.5	SB043-0.5	SB043-0.5Du	SB046-0.5	SB047-0.5
					p		
Date Sampled	Date Sampled		11/19/2016	11/19/2016	11/19/2016	11/19/2016	11/19/2016
Date Prepared			11/23/2016	11/23/2016	11/23/2016	11/23/2016	11/23/2016
Preparation Method			3550B	3550B	3550B	3550B	3550B
Date Analyzed				11/28/2016		11/28/2016	11/28/2016
Matrix			Soil	Soil	Soil	Soil	Soil
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Aldrin	1.0	2.0	ND	ND	ND	ND	ND
Chlordane (Total)	1.0	2.0	ND	ND	ND	ND	ND
Chlordane (alpha)	1.0	2.0	ND	ND	ND	ND	ND
4,4'-DDD (DDD)	1.0	2.0	ND	ND	ND	ND	ND
4,4'-DDE (DDE)	1.0	2.0	ND	ND	ND	ND	6.85
4,4'-DDT (DDT)	1.0	2.0	ND	ND	ND	ND	ND
Dieldrin	1.0	2.0	ND	ND	ND	ND	ND
Endosulfan 1	1.0	2.0	ND	ND	ND	ND	ND
Endosulfan 11	1.0	2.0	ND	ND	ND	ND	ND
Endosulfan sulfate	1.0	2.0	ND	ND	ND	ND	ND
Endrin	1.0	2.0	ND	ND	ND	ND	ND
Endrin aldehyde	1.0	2.0	ND	ND	ND	ND	ND
Endrin ketone	1.0	2.0	ND	ND	ND	ND	ND
Chlordane (gamma)	1.0	2.0	ND	ND	ND	ND	ND
Heptachlor	1.0	2.0	ND	ND	ND	ND	ND
Heptachlor epoxide	1.0	2.0	ND	ND	ND	ND	ND
alpha-Hexachlorocyclohexane (Alpha-BHC)	1.0	2.0	ND	ND	ND	ND	ND
beta-Hexachlorocyclohexane (Betta-BHC)	1.0	2.0	ND	ND	ND	ND	ND
delta-Hexachlorocyclohexane (Delta-BHC)	1.0	2.0	ND	ND	ND	ND	ND
gamma-Hexachlorocyclohexane	1.0	2.0	ND	ND	ND	ND	ND
(Gamma-BHC, Lindane)							
Methoxychlor	5.0	10.0	ND	ND	ND	ND	ND
Toxaphene	85.0	170.0	ND	ND	ND	ND	ND

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 19

 Project ID:
 611089
 AETL Job Number
 Submitted
 Client

 85425
 11/22/2016
 CSC-LB

Our Lab I.D.		85425.11	85425.12	85425.13	85425.14	85425.15
Surrogates	%Rec.Limit	% Rec.				
Decachlorobiphenyl	30-150	73.2	70.6	73.6	73.2	72.6
Tetrachloro-m-xylene	30-150	76.0	73.6	78.2	76.6	77.8

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attn: Aaron Garrett Page: 20

Project ID: 611089

AETL Job Number	Submitted	Client
85425	11/22/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 112316MB2

Our Lab I.D. 85425.16 85425.17 85425.18 Client Sample I.D. SB048-0.5 SB051-0.5 SB052-0.5 11/19/2016 11/19/2016 11/19/2016 Date Sampled Date Prepared 11/23/2016 11/23/2016 11/23/2016 Preparation Method 3550B 3550B 3550B Date Analyzed 11/28/2016 11/28/2016 11/28/2016 Matrix Soil Soil Soil Units ug/Kg ug/Kg ug/Kg Dilution Factor Analytes Results Results Results **PQL** MDL Aldrin 1.0 2.0 ND ND ND 1.0 2.0 60.1 ND ND Chlordane (Total) Chlordane (alpha) 1.0 2.0 29.8 ND ND 4,4'-DDD (DDD) 1.0 2.0 ND ND ND 2.0 ND 4,4'-DDE (DDE) 1.0 13.2 4.69 2.0 10.2 4,4'-DDT (DDT) 1.0 1.84J ND 1.0 2.0 ND ND Dieldrin ND 1.0 2.0 ND ND ND Endosulfan 1 2.0 ND ND ND Endosulfan 11 1.0 1.0 2.0 ND ND ND Endosulfan sulfate Endrin 1.0 2.0 ND ND ND 1.0 2.0 ND ND ND Endrin aldehyde 1.0 2.0 ND Endrin ketone ND ND 1.0 2.0 30.3 ND ND Chlordane (gamma) 1.0 2.0 ND ND ND Heptachlor Heptachlor epoxide 1.0 2.0 ND ND ND alpha-Hexachlorocyclohexane (Alpha-BHC) 1.0 2.0 ND ND ND beta-Hexachlorocyclohexane (Betta-BHC) 1.0 2.0 ND ND ND 1.0 2.0 ND ND ND delta-Hexachlorocyclohexane (Delta-BHC) 1.0 2.0 gamma-Hexachlorocyclohexane ND ND ND (Gamma-BHC, Lindane) Methoxychlor 5.0 10.0 ND ND ND 85.0 170.0 Toxaphene ND ND ND

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 21

 Project ID:
 611089
 AETL Job Number
 Submitted
 Client

 85425
 11/22/2016
 CSC-LB

Our Lab I.D.		85425.16	85425.17	85425.18	
Surrogates	%Rec.Limit	% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150	76.8	79.2	75.4	
Tetrachloro-m-xylene	30-150	81.2	84.2	78.2	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attn: Aaron Garrett Page: 22

Project ID: 611089

AETL Job Number	Submitted	Client
85425	11/22/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 112816MB1

Our Lab I.D. Method Blank Client Sample I.D. Date Sampled Date Prepared 11/28/2016 3550B Preparation Method Date Analyzed 11/29/2016 Matrix Soil Units ug/Kg Dilution Factor Analytes Results MDL **PQL** Aldrin 1.0 2.0 ND 1.0 2.0 ND Chlordane (Total) Chlordane (alpha) 1.0 2.0 ND 4,4'-DDD (DDD) 1.0 2.0 ND 2.0 ND 4,4'-DDE (DDE) 1.0 1.0 2.0 4,4'-DDT (DDT) ND 2.0 1.0 ND Dieldrin 1.0 2.0 ND Endosulfan 1 1.0 2.0 ND Endosulfan 11 Endosulfan sulfate 1.0 2.0 ND 2.0 Endrin 1.0 ND Endrin aldehyde 1.0 2.0 ND Endrin ketone 1.0 2.0 ND 1.0 2.0 ND Chlordane (gamma) Heptachlor 1.0 2.0 ND Heptachlor epoxide 1.0 2.0 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 1.0 2.0 ND beta-Hexachlorocyclohexane (Betta-BHC) 1.0 2.0 ND 2.0 delta-Hexachlorocyclohexane (Delta-BHC) 1.0 ND 1.0 2.0 ND gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane) Methoxychlor 5.0 10.0 ND 85.0 170.0 Toxaphene ND

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 23

 Project ID:
 611089
 AETL Job Number
 Submitted
 Client

 85425
 11/22/2016
 CSC-LB

Our Lab I.D.		Method Blank		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	83.8		
Tetrachloro-m-xylene	30-150	83.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attn: Aaron Garrett Page: **24**

Project ID: 611089

AETL Job Number	Submitted	Client
85425	11/22/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 112816MB1

Our Lab I.D. 85425.19 Client Sample I.D. SB053-0.5 Date Sampled 11/20/2016 Date Prepared 11/28/2016 Preparation Method 3550B Date Analyzed 11/29/2016 Matrix Soil Units ug/Kg Dilution Factor 5 Analytes Results MDL **PQL** Aldrin 5 10 ND Chlordane (Total) 5 10 ND 5 Chlordane (alpha) 10 ND 4,4'-DDD (DDD) 5 10 ND 5 10 ND 4,4'-DDE (DDE) 5 4,4'-DDT (DDT) 10 ND 5 10 ND Dieldrin 5 10 ND Endosulfan 1 5 10 ND Endosulfan 11 Endosulfan sulfate 5 10 ND Endrin 5 10 ND Endrin aldehyde 5 10 ND Endrin ketone 5 10 ND Chlordane (gamma) 5 10 ND Heptachlor 5 10 ND Heptachlor epoxide 5 10 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 5 10 ND 5 beta-Hexachlorocyclohexane (Betta-BHC) 10 ND 5 delta-Hexachlorocyclohexane (Delta-BHC) 10 ND 5 10 ND gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane) Methoxychlor 25 50 ND 425 850 Toxaphene ND

Comment(s):

85425.19: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 25

 Project ID:
 611089
 AETL Job Number
 Submitted
 Client

 85425
 11/22/2016
 CSC-LB

Our Lab I.D.		85425.19		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	80.4		
Tetrachloro-m-xylene	30-150	82.4		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attn: Aaron Garrett Page: **26**

Project ID: 611089

AETL Job Number	Submitted	Client
85425	11/22/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 112816MB1

Our Lab I.D. 85425.20 Client Sample I.D. SB053-0.5Du Date Sampled 11/20/2016 Date Prepared 11/28/2016 Preparation Method 3550B Date Analyzed 11/29/2016 Matrix Soil Units ug/Kg Dilution Factor Analytes MDL **PQL** Results 1.0 2.0 ND Aldrin Chlordane (Total) 1.0 2.0 ND Chlordane (alpha) 1.0 2.0 ND 2.0 ND 4,4'-DDD (DDD) 1.0 2.0 4,4'-DDE (DDE) 1.0 ND 2.0 1.0 ND 4,4'-DDT (DDT) 1.0 2.0 ND Dieldrin 1.0 2.0 ND Endosulfan 1 Endosulfan 11 1.0 2.0 ND 2.0 Endosulfan sulfate 1.0 ND 1.0 2.0 ND Endrin Endrin aldehyde 1.0 2.0 ND 1.0 2.0 ND Endrin ketone 1.0 2.0 ND Chlordane (gamma) Heptachlor 1.0 2.0 ND Heptachlor epoxide 1.0 2.0 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 1.0 2.0 ND beta-Hexachlorocyclohexane (Betta-BHC) 2.0 1.0 ND 1.0 2.0 delta-Hexachlorocyclohexane (Delta-BHC) ND 1.0 2.0 ND gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane) 5.0 10.0 Methoxychlor ND 85.0 170.0 ND Toxaphene

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 27

 Project ID:
 611089

 85425
 11/22/2016
 CSC-LB

Our Lab I.D.		85425.20		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	64.6		
Tetrachloro-m-xylene	30-150	89.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attn: Aaron Garrett Page: 28

Project ID: 611089

AETL Job Number	Submitted	Client
85425	11/22/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 112816MB1

Our Lab I.D. 85425.21 Client Sample I.D. SB054-0.5 Date Sampled 11/20/2016 Date Prepared 11/28/2016 Preparation Method 3550B Date Analyzed 11/29/2016 Matrix Soil Units ug/Kg Dilution Factor 2 Analytes Results **PQL** MDL Aldrin 2.0 4.0 ND 2.0 4.0 ND Chlordane (Total) Chlordane (alpha) 2.0 4.0 ND 4,4'-DDD (DDD) 2.0 4.0 ND 4.0 4,4'-DDE (DDE) 2.0 ND 4.0 4,4'-DDT (DDT) 2.0 ND 4.0 2.0 ND Dieldrin 2.0 4.0 ND Endosulfan 1 2.0 4.0 ND Endosulfan 11 Endosulfan sulfate 2.0 4.0 ND 4.0 Endrin 2.0 ND Endrin aldehyde 2.0 4.0 ND 4.0 2.0 ND Endrin ketone 2.0 4.0 ND Chlordane (gamma) 2.0 4.0 ND Heptachlor Heptachlor epoxide 2.0 4.0 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 2.0 4.0 ND 2.0 4.0 beta-Hexachlorocyclohexane (Betta-BHC) ND 4.0 2.0 ND delta-Hexachlorocyclohexane (Delta-BHC) 2.0 4.0 ND gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane) Methoxychlor 10 20 ND 170 340 Toxaphene ND

Comment(s):

85425.21: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 29

 Project ID:
 611089
 AETL Job Number
 Submitted
 Client

 85425
 11/22/2016
 CSC-LB

Our Lab I.D.		85425.21		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	83.2		
Tetrachloro-m-xylene	30-150	88.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attn: Aaron Garrett Page: **30**

Project ID: 611089

AETL Job Number	Submitted	Client
85425	11/22/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 112816MB1

Our Lab I.D.			85425,22	85425.23		
Client Sample I.D.			SB058-0.5	SB059-0.5		
Date Sampled				11/20/2016		
Date Prepared			11/28/2016			
Preparation Method			3550B	3550B		
Date Analyzed			11/29/2016	11/29/2016		
Matrix			Soil	Soil		
Units			ug/Kg	ug/Kg		
Dilution Factor			1	1		
Analytes	MDL	PQL	Results	Results		
Aldrin	1.0	2.0	ND	ND		
Chlordane (Total)	1.0	2.0	ND	ND		
Chlordane (alpha)	1.0	2.0	ND	ND		
4,4'-DDD (DDD)	1.0	2.0	ND	ND		
4,4'-DDE (DDE)	1.0	2.0	ND	ND		
4,4'-DDT (DDT)	1.0	2.0	ND	ND		
Dieldrin	1.0	2.0	ND	ND		
Endosulfan 1	1.0	2.0	ND	ND		
Endosulfan 11	1.0	2.0	ND	ND		
Endosulfan sulfate	1.0	2.0	ND	ND		
Endrin	1.0	2.0	ND	ND		
Endrin aldehyde	1.0	2.0	ND	ND		
Endrin ketone	1.0	2.0	ND	ND		
Chlordane (gamma)	1.0	2.0	ND	ND		
Heptachlor	1.0	2.0	ND	ND		
Heptachlor epoxide	1.0	2.0	ND	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	1.0	2.0	ND	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	1.0	2.0	ND	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	1.0	2.0	ND	ND		
gamma-Hexachlorocyclohexane	1.0	2.0	ND	ND		
(Gamma-BHC, Lindane)						
Methoxychlor	5.0	10.0	ND	ND		
Toxaphene	85.0	170.0	ND	ND		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 31

 Project ID:
 611089
 AETL Job Number
 Submitted
 Client

 85425
 11/22/2016
 CSC-LB

Our Lab I.D.		85425.22	85425.23		
Surrogates	%Rec.Limit	% Rec.	% Rec.		
Decachlorobiphenyl	30-150	61.8	58.0		
Tetrachloro-m-xylene	30-150	80.0	75.2		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attn: Aaron Garrett Page: **32**

Project ID: 611089

AETL Job Number Submitted Client
85425 11/22/2016 CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 112816MB1

Our Lab I.D.			85425.24		
Client Sample I.D.			SB060-0.5		
Date Sampled			11/20/2016		
Date Prepared			11/28/2016		
Preparation Method			3550B		
Date Analyzed			11/29/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			5		
Analytes	MDL	PQL	Results		
Aldrin	5	10	ND		
Chlordane (Total)	5	10	ND		
Chlordane (alpha)	5	10	ND		
4,4'-DDD (DDD)	5	10	ND		
4,4'-DDE (DDE)	5	10	ND		
4,4'-DDT (DDT)	5	10	ND		
Dieldrin	5	10	ND		
Endosulfan 1	5	10	ND		
Endosulfan 11	5	10	ND		
Endosulfan sulfate	5	10	ND		
Endrin	5	10	ND		
Endrin aldehyde	5	10	ND		
Endrin ketone	5	10	ND		
Chlordane (gamma)	5	10	ND		
Heptachlor	5	10	ND		
Heptachlor epoxide	5	10	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	5	10	ND		
beta-Hexachlorocyclohexane (Betta-BHC)	5	10	ND		
delta-Hexachlorocyclohexane (Delta-BHC)	5	10	ND		
gamma-Hexachlorocyclohexane	5	10	ND		
(Gamma-BHC, Lindane)					
Methoxychlor	25	50	ND		
Toxaphene	425	850	ND		

Comment(s):

85425.24: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 33

 Project ID:
 611089
 AETL Job Number
 Submitted
 Client

 85425
 11/22/2016
 CSC-LB

Our Lab I.D.		85425.24		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	72.2		
Tetrachloro-m-xylene	30-150	90.2		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attn: Aaron Garrett Page: **34**

Project ID: 611089

AETL Job Number	Submitted	Client
85425	11/22/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 112816MB1

Our Lab I.D. 85425.25 Client Sample I.D. SB061-0.5 Date Sampled 11/20/2016 Date Prepared 11/28/2016 Preparation Method 3550B Date Analyzed 11/29/2016 Matrix Soil Units ug/Kg Dilution Factor 2 Analytes MDL Results **PQL** Aldrin 2.0 4.0 ND 2.0 4.0 ND Chlordane (Total) Chlordane (alpha) 2.0 4.0 ND 4,4'-DDD (DDD) 2.0 4.0 ND 4.0 ND 4,4'-DDE (DDE) 2.0 4.0 2.56J 4,4'-DDT (DDT) 2.0 2.0 4.0 ND Dieldrin 2.0 4.0 ND Endosulfan 1 2.0 4.0 ND Endosulfan 11 Endosulfan sulfate 2.0 4.0 ND 4.0 Endrin 2.0 ND Endrin aldehyde 2.0 4.0 ND 4.0 Endrin ketone 2.0 ND 2.0 4.0 ND Chlordane (gamma) Heptachlor 2.0 4.0 ND Heptachlor epoxide 2.0 4.0 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 2.0 4.0 ND 2.0 4.0 beta-Hexachlorocyclohexane (Betta-BHC) ND 4.0 delta-Hexachlorocyclohexane (Delta-BHC) 2.0 ND 2.0 4.0 ND gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane) Methoxychlor 10 20 ND 170 340 Toxaphene ND

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 35

 Project ID:
 611089
 AETL Job Number
 Submitted
 Client

 85425
 11/22/2016
 CSC-LB

Our Lab I.D.		85425.25		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	70.8		
Tetrachloro-m-xylene	30-150	95.4		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attn: Aaron Garrett Page: **36**

Project ID: 611089

AETL Job Number	Submitted	Client
85425	11/22/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 112816MB1

Our Lab I.D. 85425.26 Client Sample I.D. SB063-0.5 Date Sampled 11/19/2016 Date Prepared 11/28/2016 Preparation Method 3550B Date Analyzed 11/29/2016 Matrix Soil Units ug/Kg Dilution Factor Analytes Results **PQL** MDL Aldrin 1.0 2.0 ND 1.0 2.0 ND Chlordane (Total) Chlordane (alpha) 1.0 2.0 ND 4,4'-DDD (DDD) 1.0 2.0 ND 2.0 ND 4,4'-DDE (DDE) 1.0 2.0 4,4'-DDT (DDT) 1.0 ND 2.0 1.0 ND Dieldrin 1.0 2.0 ND Endosulfan 1 1.0 2.0 ND Endosulfan 11 Endosulfan sulfate 1.0 2.0 ND 2.0 Endrin 1.0 ND Endrin aldehyde 1.0 2.0 ND Endrin ketone 1.0 2.0 ND 1.0 2.0 ND Chlordane (gamma) Heptachlor 1.0 2.0 ND Heptachlor epoxide 1.0 2.0 ND alpha-Hexachlorocyclohexane (Alpha-BHC) 1.0 2.0 ND beta-Hexachlorocyclohexane (Betta-BHC) 1.0 2.0 ND 2.0 delta-Hexachlorocyclohexane (Delta-BHC) 1.0 ND 1.0 2.0 ND gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane) Methoxychlor 5.0 10.0 ND 85.0 170.0 Toxaphene ND

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 37

 Project ID:
 611089
 AETL Job Number
 Submitted
 Client

 85425
 11/22/2016
 CSC-LB

Our Lab I.D.		85425.26		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	49.2		
Tetrachloro-m-xylene	30-150	78.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attn: Aaron Garrett Page: 38

Project ID: 611089

AETL Job Number	Submitted	Client
85425	11/22/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC QC Batch No: 112816MB1

Our Lab I.D. 85425.27 85425.28 Client Sample I.D. SB070-0.5 SB078-0.5 Date Sampled 11/19/2016 11/19/2016 Date Prepared 11/28/2016 11/28/2016 Preparation Method 3550B 3550B Date Analyzed 11/29/2016 11/29/2016 Matrix Soil Soil Units ug/Kg ug/Kg **Dilution Factor** 5 5 Analytes Results Results MDL **PQL** Aldrin 5 10 ND ND 5 10 ND ND Chlordane (Total) 5 Chlordane (alpha) 10 ND ND 4,4'-DDD (DDD) 5 10 ND ND ND 4,4'-DDE (DDE) 5 10 ND 5 4,4'-DDT (DDT) 10 ND ND 5 10 ND ND Dieldrin 5 10 ND ND Endosulfan 1 5 10 ND Endosulfan 11 ND Endosulfan sulfate 5 10 ND ND Endrin 5 10 ND ND Endrin aldehyde 5 10 ND ND 5 10 ND Endrin ketone ND 5 10 ND ND Chlordane (gamma) 5 10 ND ND Heptachlor Heptachlor epoxide 5 10 ND ND alpha-Hexachlorocyclohexane (Alpha-BHC) 5 10 ND ND 5 beta-Hexachlorocyclohexane (Betta-BHC) 10 ND ND 5 10 ND ND delta-Hexachlorocyclohexane (Delta-BHC) 5 10 ND gamma-Hexachlorocyclohexane ND (Gamma-BHC, Lindane) Methoxychlor 25 50 ND ND 425 850 ND Toxaphene ND

Comment(s):

85425.27: Analyzed under dilution due to matrix interference 85425.28: Analyzed under dilution due to matrix interference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 39

 Project ID:
 611089
 AETL Job Number
 Submitted
 Client

 85425
 11/22/2016
 CSC-LB

Our Lab I.D.		85425.27	85425.28		
Surrogates	%Rec.Limit	% Rec.	% Rec.		
Decachlorobiphenyl	30-150	64.0	83.8		
Tetrachloro-m-xylene	30-150	90.6	83.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attn: Aaron Garrett Page: 40

Project ID: 611089

AETL Job Number	Submitted	Client
85425	11/22/2016	CSC-LB

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC QC Batch No: 112916

Our Lab I.D. Method Blank Client Sample I.D. Date Sampled Date Prepared 11/29/2016 3550B Preparation Method Date Analyzed 11/29/2016 Matrix Soil Units ug/Kg Dilution Factor Analytes Results **PQL** MDL Aroclor-1016 (PCB-1016) 25.0 50.0 ND Aroclor-1221 (PCB-1221) 25.0 50.0 ND Aroclor-1232 (PCB-1232) 25.0 50.0 ND Aroclor-1242 (PCB-1242) 25.0 50.0 ND 25.0 50.0 ND Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254) 25.0 50.0 ND Aroclor-1260 (PCB-1260) 25.0 50.0 ND Aroclor-1262 (PCB-1262) 25.0 50.0 ND Aroclor-1268 (PCB-1268) 25.0 50.0 ND Our Lab I.D. Method Blank %Rec.Limit Surrogates % Rec. Decachlorobiphenyl 30-150 81.0 30-150 119 Tetrachloro-m-xylene

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925

Long Beach, CA 90802

Telephone: (818)727-2553 Attn: Aaron Garrett Page: 41

Project ID: 611089

AETL Job Number	Submitted	Client
85425	11/22/2016	CSC-LB

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 112916

Our Lab I.D.			85425.08		
Client Sample I.D.			SB031-0.5		
Date Sampled			11/20/2016		
Date Prepared			11/29/2016		
Preparation Method			3550B		
Date Analyzed			11/29/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			2		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	50	100	ND		
Aroclor-1221 (PCB-1221)	50	100	ND		
Aroclor-1232 (PCB-1232)	50	100	ND		
Aroclor-1242 (PCB-1242)	50	100	ND		
Aroclor-1248 (PCB-1248)	50	100	ND		
Aroclor-1254 (PCB-1254)	50	100	ND		
Aroclor-1260 (PCB-1260)	50	100	ND		
Aroclor-1262 (PCB-1262)	50	100	ND		
Aroclor-1268 (PCB-1268)	50	100	ND		

Comment(s):

85425.08: Analyzed under dilution due to matrix interference

Our Lab I.D.		85425.08		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	116		
Tetrachloro-m-xylene	30-150	131		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attn: Aaron Garrett Page: **42**

Project ID: 611089

AETL Job Number	Submitted	Client
85425	11/22/2016	CSC-LB

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 112916

	·					
		85425.11	85425.29	85425.30		
Client Sample I.D. Date Sampled			SB001-10	SB001-15		
		11/19/2016	11/19/2016	11/19/2016		
		11/29/2016	11/29/2016	11/29/2016		
		3550B	3550B	3550B		
		11/29/2016	11/29/2016	11/29/2016		
		Soil	Soil	Soil		
		ug/Kg	ug/Kg	ug/Kg		
		1	1	1		
MDL	PQL	Results	Results	Results		
25.0	50.0	ND	ND	ND		
25.0	50.0	ND	ND	ND		
25.0	50.0	ND	ND	ND		
25.0	50.0	ND	ND	ND		
25.0	50.0	ND	ND	ND		
25.0	50.0	ND	ND	ND		
25.0	50.0	ND	ND	ND		
25.0	50.0	ND	ND	ND		
25.0	50.0	ND	ND	ND		
		85425.11	85425.29	85425.30		
%Rec.Limit		% Rec.	% Rec.	% Rec.		
30-150		93.6	93.0	103		
30-150		118	121	133		
	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 30-150	25.0 50.0 25.0 50.0 25.0 50.0 25.0 50.0 25.0 50.0 25.0 50.0 25.0 50.0 25.0 50.0 25.0 50.0 25.0 50.0 25.0 50.0	11/29/2016 3550B 11/29/2016 Soil ug/Kg 1	SB042-0.5 SB001-10 11/19/2016 11/19/2016 11/29/2016 11/29/2016 3550B 3550B 11/29/2016 11/29/2016 Soil Soil ug/Kg ug/Kg 1	SB042-0.5 SB001-10 SB001-15	SB042-0.5 SB001-10 SB001-15 11/19/2016 11/19/2016 11/19/2016 11/29/2016 11/29/2016 11/29/2016 3550B 3550B 3550B 11/29/2016 11/29/2016 11/29/2016 Soil Soil Soil ug/Kg ug/Kg ug/Kg 1

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attn: Aaron Garrett Page: 43

Project ID: 611089

AETL Job Number	Submitted	Client
85425	11/22/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 112316MB2; Dup or Spiked Sample: 85425.16; LCS: Clean Sand; QC Prepared: 11/23/2016; QC Analyzed: 11/28/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aldrin	0.00	20.0	18.8	94.0	20.0	18.1	90.5	3.8	40-150	<40
4,4'-DDT (DDT)	2.39	50.0	52.4	100	50.0	51.7	98.6	1.4	40-150	<40
Dieldrin	0.00	50.0	45.2	90.4	50.0	43.8	87.6	3.1	40-150	<40
Endrin	0.00	50.0	47.4	94.8	50.0	45.8	91.6	3.4	40-150	<40
Heptachlor	0.00	20.0	21.4	107	20.0	20.4	102	4.8	40-150	<40
gamma-Hexachlorocyclohexane	0.00	20.0	18.6	93.0	20.0	17.9	89.5	3.8	40-150	<40
(Gamma-BHC, Lindane)										
Surrogates										
Decachlorobiphenyl	0.00	50.0	38.6	77.2	50.0	38.4	76.8	<1	30-150	<40
Tetrachloro-m-xylene	0.00	50.0	44.7	89.4	50.0	41.5	83.0	7.4	30-150	<40

QC Batch No: 112316MB2; Dup or Spiked Sample: 85425.16; LCS: Clean Sand; QC Prepared: 11/23/2016; QC Analyzed: 11/28/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aldrin	20.0	15.7	78.5	20.0	14.8	74.0	5.9	50-150	<40	
4,4'-DDT (DDT)	50.0	37.6	75.2	50.0	35.6	71.2	5.5	50-150	<40	
Dieldrin	50.0	38.8	77.6	50.0	37.1	74.2	4.5	50-150	<40	
Endrin	50.0	38.2	76.4	50.0	36.8	73.6	3.7	50-150	<40	
Heptachlor	20.0	16.2	81.0	20.0	15.0	75.0	7.7	50-150	<40	
gamma-Hexachlorocyclohexane	20.0	15.3	76.5	20.0	12.6	63.0	19.4	50-150	<40	
(Gamma-BHC, Lindane)										
Surrogates										
Decachlorobiphenyl	50.0	34.8	69.6	50.0	33.7	67.4	3.2	30-150	<40	
Tetrachloro-m-xylene	50.0	32.0	64.0	50.0	26.7	53.4	18.1	30-150	<40	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attn: Aaron Garrett Page: 44

Project ID: 611089

AETL Job Number	Submitted	Client
85425	11/22/2016	CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 112816MB1; Dup or Spiked Sample: 85425.22; LCS: Clean Sand; QC Prepared: 11/28/2016; MS Analyzed: 11/29/2016; LCS Analyzed: 11/28/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aldrin	0.00	20.0	16.2	81.0	20.0	15.6	78.0	3.77	40-150	<40
4,4'-DDT (DDT)	0.00	50.0	51.5	103	50.0	45.9	91.8	11.5	40-150	<40
Dieldrin	0.00	50.0	37.2	74.4	50.0	36.4	72.8	2.17	40-150	<40
Endrin	0.00	50.0	42.1	84.2	50.0	40.4	80.8	4.12	40-150	<40
Heptachlor	0.00	20.0	19.0	95.0	20.0	18.4	92.0	3.21	40-150	<40
gamma-Hexachlorocyclohexane	0.00	20.0	17.0	85.0	20.0	16.4	82.0	3.59	40-150	<40
(Gamma-BHC, Lindane)										
Surrogates										
Decachlorobiphenyl	0.00	50.0	28.9	57.8	50.0	27.7	55.4	4.15	30-150	<40
Tetrachloro-m-xylene	0.00	50.0	41.9	83.8	50.0	40.4	80.8	3.58	30-150	<40

QC Batch No: 112816MB1; Dup or Spiked Sample: 85425.22; LCS: Clean Sand; QC Prepared: 11/28/2016; MS Analyzed: 11/29/2016; LCS Analyzed: 11/28/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aldrin	20.0	14.8	74.0	20.0	12.4	62.0	17.6	50-150	<40	
4,4'-DDT (DDT)	50.0	47.1	94.2	50.0	38.5	77.0	20.1	50-150	<40	
Dieldrin	50.0	36.1	72.2	50.0	33.1	66.2	8.67	50-150	<40	
Endrin	50.0	38.8	77.6	50.0	34.6	69.2	11.4	50-150	<40	
Heptachlor	20.0	16.8	84.0	20.0	13.9	69.5	18.9	50-150	<40	
gamma-Hexachlorocyclohexane	20.0	15.3	76.5	20.0	12.9	64.5	17.0	50-150	<40	
(Gamma-BHC, Lindane)										
Surrogates										
Decachlorobiphenyl	50.0	27.9	55.8	50.0	23.2	46.4	16.8	30-150	<40	
Tetrachloro-m-xylene	50.0	34.8	69.6	50.0	28.4	56.8	18.4	30-150	<40	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

Clark Seif Clark, Inc. 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (818)727-2553 Attn: Aaron Garrett Page: 45

Project ID: 611089

AETL Job Number	Submitted	Client
85425	11/22/2016	CSC-LB

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 112916; Dup or Spiked Sample: 85425.30; LCS: Clean Sand; QC Prepared: 11/29/2016; QC Analyzed: 11/29/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	500	413	82.6	500	413	82.6	<1	50-150	<20
Aroclor-1260 (PCB-1260)	0.00	500	452	90.4	500	439	87.8	2.9	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	50.0	54.5	109	50.0	53.0	106	2.8	30-150	<20
Tetrachloro-m-xylene	0.00	50.0	64.0	128	50.0	62.5	125	2.4	30-150	<20

QC Batch No: 112916; Dup or Spiked Sample: 85425.30; LCS: Clean Sand; QC Prepared: 11/29/2016; QC Analyzed: 11/29/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	473	94.6	500	436	87.2	8.1	50-150	<20	
Aroclor-1260 (PCB-1260)	500	475	95.0	500	436	87.2	8.6	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	49.5	99.0	50.0	48.5	97.0	2.0	30-150	<20	
Tetrachloro-m-xylene	50.0	72.5	145	50.0	70.0	140	3.5	30-150	<20	

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

*: In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected . However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attention: Aaron Garrett

Number of Pages 11

Date Received 11/08/2016 Date Reported 12/12/2016

Job Number	Order Date	Client
85541	12/01/2016	CSC-LB

Enclosed please find results of analyses of 6 soil samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By:

Approved By: C. Raymana

Cyrus Razmara, Ph.D. Laboratory Director

CHEMTEK Environmental Laboratories Inc

(9) 08/1 poppy* 0 8254 35541 JOD NO.: 95/95 O C 2808 V23 * 208 EBA Page: CAM 17 Melals ANALYSIS REQUIRED Sulfide, Cyanide, O&G pH, Conductivity, Turbidity 18 CS C COD | 122 | 800 | 1D2 OXAGENATES (8260 B) SHORT CHAIN OF CUSTODY RECORD **AOC**2 (8590 B) FULL וויסונה chald to CARBON CHAIN 8015M TPH D of DRO 8015M TPH G or GRO Che mitek NO. OF Other Preserved - 42J 48 hr 24 hr P.O. No. REMARKS NOW N beb (ELAP No. 2629) 85198.00 35198.04 35198.05 35198.06 85193.0) 35198.03 Turn Around Time CUSTOMER INFORMATION SAMPLED SAMPLED TYPE * DH/THME CA Dept of Health Accredited, (ELAP No. 1435) & Mobile 00 3554 Larwin Circle, Samla Fe Springs, CA 90674 9 GREEFE Fel. (562) 926-9848 FAX (562) 926-91-9-11 DATE 5.0.7.002 PROJECT CONTACT 1 500 21 - 0,5 2 56022-0.5 S.O. 12 008 1 Sec 23-0.5 6 500 UL- 0.5 30. 27. 205 c COMPANY NAME: SAMPLEID PROJECT NAME SITE ADDRESS. SAMPLED BY:

ADDRESS: PHONE

	TO THE PARTY OF TH	AN POST COLUMN C		Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the
REUNGUISHED BY:	Samiso	METC	21-8-11	19:30
RECEIVED FOR LABORATORY BY:	Trag claude	NEL	11/80/11	1930
NOTE; Samples are discarded 30 days after results are reported unless other ar	ther arrangements are made.	stribution: WHITE with report / YELLOW to CHEMTEK / PINK t	to courier	A. C. Marie

Type: so-soil GW-Ground Water WW-Waste Water AC-Aqueous A-Air OT-Other

RECEIVED BY:

70.

277

Oo

*

いたし

00

*

0551

1/8/11 11-8-16

木工

でのかり

Sargist

PRINT NAME

85198-16

85198-12

50.05

2 2 2

40.0.5

49-0.5

5.0-15.000

8 SOUTE O.S

57-0.5

62-0.5

RELINQUISHED BY:

56-0.5

82198-10 35198:11

35198.3

85198.8

85199-14 95192-13

85/48.1K

TIME

DATE

COMPANY NAME

CHEMTEK Environmental Laboratories Inc.

CREMIEN Environmental Laboratores 13554 Larvinehele-Santa Es. 2017/02

Tel. (562) 926-9848 PAX (562) 926-8324 Email: Chembel absolucin

CA Dept of Herrith Accredited, (ELAP No. 1435) & Mobile Lab (ELAP No. 9422)

300 No.: 85192

SK CHAIN OF CUSTODY RECORD

Job No.: 85 192 Page: 2 of A

				15	F		r	-		-
COMPANY NAME: /U	apara de se ada de la colo en el	Ī		10	A					
PROJECT CONTACT:	Emole				-					
ADDRESS:				(8 (97C				
PHONE:	Tr. AX.		872	759(o '€				
PROJECT INFORMATION	MATION		VIV	8) \$		pļt	SID			
PROJECT NAME	P,O. No.	H C	90 P	d LE	1/5	λαι	teA	78	172131001	
SITE ADDRESS:			NC	/N3		0.4	V Z I		anazolina-es	
SAMPLED BY:	Turn Around Time NORM 24 hr 48 hr Other		88,	O.J.	_	apil	. W	_	CE (X 11 AMIS 1 / P	
SAMPLEID SAMPLED SAMPLED TYPE **	pH/Time REMARKS Preser	08	CA	хо		Ins	√⊃	d3		
50664-0,5 11/6/12	85198.17									
65-03	35793.13									
\$ 66.0,5	85793-19			Solar va serv	The same same		************			
67-05	85198.10				VA. 1042					
\$ 0-82	35196.21									
50-63	85798.22							44-000		
71.0.5	85148.23					and the second				
72-0.5	85198.24					on their suit				
73.05	85/93.25									
20 AFC 80	85/18-26						Cassivian	*	80	5541.04
75.0.5	ES198. Y			PACCO MANAGEMENT						
and delivery to the second	85198.20						OAS DECIMA			
	85198.29								40.000	
75.0.5	85(98:30						ration in the state			
€0-0.5	85/48-31					, mesan v		2. CO.E. SCH		
	85148.32			Q1.01				*	* 85	50.12
SIGNATURE	PRINT NAME			COMP	COMPANY NAME			0	DATE	TIME
RELINGUISHED BY: +	At Brills (said H	\		SSC				N/K	91/2	234
RECEIVED BY: SOMIKA	HET SAMIST		ACT			ACCURATION AND ACCURA		5	9/2	1430
REINQUISHED BY:	Same S	A SECTION OF THE PROPERTY OF T	ACTZ	ept (ACMC) bendember i versk under 100 c. a. C. (100 a. a. C. (100 a. a. C. (100 a. a. c. (100 a. a. c. (100 a	de america Verga Yandalanian			N-8	27-8-N	(PS0
RECEIVED FOR LABORATORY BY	(Japa () 200 C		DEN	1				11/0	1//80	1930
		Distribution	Inn - WHITE with	h report /	VELLOW	OCHEA	ATEK /	/ VELLOW to CHEMTER / PINK to collider	Lirier	

NOTE: Samples are discarded 36 days after results are reported unless other arrangements are made.

*TYDE: SO-Sall GW-Ground Water WM-Waite Water AQ-Aquegus A-All Of-Other

CHEMTEK Environmental Laboratories Inc.

SK CHAIN OF CUSTODY RECORD

13554 Larwin Circle. Statia Fe Springs, CA 90470

Tel. (562) 926-9848 FAX (562) 926-1

CA Dept of Health-Accredited (ELAP No. 1435) & Mobile tob (ELAP No. 2629)

ō

Page:

85541.06 1930 TIME 220 05/16 11950 11/89/11C 91/2/11 11-8-16 Distribution: WHITE with report / YELLOW to CHEMTEK / PINK to courier 7808 W3 * 208 WIFL9 (CAM 17 Metals ANALYSIS REQUIRED Sulfide, Cyanide, O&G pH, Conductivity, Turbidity COMPANY NAME COD / 125 / BOD / 1D5 OXYGENATES (8260 B) SHORT AOC? (8590 B) ENTE AET CARBON CHAIN ORD to D H9T M2 F08 8015M TPH G or GRO NO. OF Office Preserved 48 hr PRINT NAME 24 ht P.O. No. Sarais P Sarais P REMARKS 35199.04 85199.05 85199.05 85199.03 85199.12 85199.12 85199.02 85199.01 85149.03 85199.09 35199.10 85199.13 85199.14 25/99.15 85199.16 EDF Turn Around Time CUSTOMER INFORMATION SAMPLED SAMPLED TYPE * DH/TIME PROJECT INFORMATION FAX 2. SICHATURE 4/0 69-0.5 RECEIVED FOR LABORA 91-0.5 92.0.5 5.0-13 3.0-12 C6-0-7 93-0.5 94-0.5 672.5 85-0.5 3-0.5 96-05 59052-b.5 PROJECT CONTACT COMPANYNAME SAMPLEID THE CHARLES BY: THE GENSTION IS PROJECT NAME SAMPLED BY: RECEIVED BY: ADDRESS

NOTE: Samples are discarded 30 days after results are reported unless other arrangements are mad

Type: 50-50! GWIGIGING Water

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attention: Aaron Garrett Project ID: None

Date Received 11/08/2016
Date Reported 12/12/2016

Job Number	Order Date	Client
85541	12/01/2016	CSC-LB

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 6 samples with the following specification on 12/01/2016.

85541.01 SB022-0.5 11/05/2016 Soil	1
85541.02 SB049-0.5 11/06/2016 Soil	1
85541.03 SB056-0.5 11/06/2016 Soil	1
85541.04 SB074-0.5 11/06/2016 Soil	1
85541.05 SB081-0.5 11/06/2016 Soil	1
85541.06 SB092-0.5 11/06/2016 Soil	1

Method ^ Submethod	Req Date	Priority	TAT	Units
(8082)	12/07/2016	2	Normal	ug/Kg

The samples were analyzed as specified on the enclosed chain of custody. No analytical non-conformances were encountered.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

		C. Raymana	
Checked By: _	_ Approved By:	<u> </u>	

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett

Page: 2

AETL Job Number	Submitted	Client
85541	11/08/2016	CSC-LB

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 111116.02

		QO Daton i	10. 1111116.02		
Our Lab I.D.			Method Blank		
Client Sample I.D.					
Date Sampled					
Date Prepared			11/11/2016		
Preparation Method			3550B		
Date Analyzed			12/06/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	ND		
Aroclor-1254 (PCB-1254)	25.0	50.0	ND		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND		
Our Lab I.D.			Method Blank		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		70.0		
Tetrachloro-m-xylene	30-150		98.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: **3**

AETL Job Number		Submitted	Client		
855	41	11/08/2016	CSC-LB		

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 111116.02

		QO Daton	110. 111110.02		
Our Lab I.D.			85541.01		
Client Sample I.D.			SB022-0.5		
Date Sampled			11/05/2016		
Date Prepared			11/11/2016		
Preparation Method			3550B		
Date Analyzed			12/06/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			2		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	50	100	ND		
Aroclor-1221 (PCB-1221)	50	100	ND		
Aroclor-1232 (PCB-1232)	50	100	ND		
Aroclor-1242 (PCB-1242)	50	100	ND		
Aroclor-1248 (PCB-1248)	50	100	ND		
Aroclor-1254 (PCB-1254)	50	100	ND		
Aroclor-1260 (PCB-1260)	50	100	ND		
Aroclor-1262 (PCB-1262)	50	100	ND		
Aroclor-1268 (PCB-1268)	50	100	ND		

Comment(s):

85541.01: Analyzed under dilution due to matrix interference

Our Lab I.D.		85541.01		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	68.0		
Tetrachloro-m-xylene	30-150	88.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 4

	AETL Job Number		Submitted	Client		
I	855	41	11/08/2016	CSC-LB		

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 111116.02

		QC Batch	No: 111116.02		
Our Lab I.D.			85541.02		
Client Sample I.D.			SB049-0.5		
Date Sampled			11/06/2016		
Date Prepared			11/11/2016		
Preparation Method			3550B		
Date Analyzed			12/06/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	ND		
Aroclor-1254 (PCB-1254)	25.0	50.0	ND		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND		
Our Lab I.D.			85541.02		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		62.0		
Tetrachloro-m-xylene	30-150		75.4		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 5

AETL Job Number		Submitted	Client		
855	41	11/08/2016	CSC-LB		

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 111116.02

		QC Daten	140. 111110.02		
Our Lab I.D.			85541.03		
Client Sample I.D.			SB056-0.5		
Date Sampled			11/06/2016		
Date Prepared			11/11/2016		
Preparation Method			3550B		
Date Analyzed			12/06/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			5		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	125	250	ND		
Aroclor-1221 (PCB-1221)	125	250	ND		
Aroclor-1232 (PCB-1232)	125	250	ND		
Aroclor-1242 (PCB-1242)	125	250	ND		
Aroclor-1248 (PCB-1248)	125	250	ND		
Aroclor-1254 (PCB-1254)	125	250	ND		
Aroclor-1260 (PCB-1260)	125	250	ND		
Aroclor-1262 (PCB-1262)	125	250	ND		
Aroclor-1268 (PCB-1268)	125	250	ND		

Comment(s):

85541.03: Analyzed under dilution due to matrix interference

Our Lab I.D.	·	85541.03		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	54.6		
Tetrachloro-m-xylene	30-150	39.0		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 6

AETL Job Number	Submitted	Client
85541	11/08/2016	CSC-LB

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 111116.02

		QO Dateir	NO. 1111110.02		
Our Lab I.D.			85541.04		
Client Sample I.D.			SB074-0.5		
Date Sampled			11/06/2016		
Date Prepared			11/11/2016		
Preparation Method			3550B		
Date Analyzed			12/06/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	ND		
Aroclor-1254 (PCB-1254)	25.0	50.0	ND		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND		
Our Lab I.D.			85541.04		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		64.0		
Tetrachloro-m-xylene	30-150		96.3		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 7

AETL Job Number	Submitted	Client
85541	11/08/2016	CSC-LB

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 111116.02

		QO Duton	110. 111110.02		
Our Lab I.D.			85541.05		
Client Sample I.D.			SB081-0.5		
Date Sampled			11/06/2016		
Date Prepared			11/11/2016		
Preparation Method			3550B		
Date Analyzed			12/06/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			5		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	125	250	ND		
Aroclor-1221 (PCB-1221)	125	250	ND		
Aroclor-1232 (PCB-1232)	125	250	ND		
Aroclor-1242 (PCB-1242)	125	250	ND		
Aroclor-1248 (PCB-1248)	125	250	ND		
Aroclor-1254 (PCB-1254)	125	250	ND		
Aroclor-1260 (PCB-1260)	125	250	ND		
Aroclor-1262 (PCB-1262)	125	250	ND		
Aroclor-1268 (PCB-1268)	125	250	ND		

Comment(s):

85541.05: Analyzed under dilution due to matrix interference

Our Lab I.D.		85541.05		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	89.8		
Tetrachloro-m-xylene	30-150	90.6		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 8

AETL Job Number	Submitted	Client
85541	11/08/2016	CSC-LB

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 111416.02

		QU Duton	140. 111410.02		
Our Lab I.D.			Method Blank		
Client Sample I.D.					
Date Sampled					
Date Prepared			11/14/2016		
Preparation Method			3550B		
Date Analyzed			11/16/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	25.0	50.0	ND		
Aroclor-1221 (PCB-1221)	25.0	50.0	ND		
Aroclor-1232 (PCB-1232)	25.0	50.0	ND		
Aroclor-1242 (PCB-1242)	25.0	50.0	ND		
Aroclor-1248 (PCB-1248)	25.0	50.0	ND		
Aroclor-1254 (PCB-1254)	25.0	50.0	ND		
Aroclor-1260 (PCB-1260)	25.0	50.0	ND		
Aroclor-1262 (PCB-1262)	25.0	50.0	ND		
Aroclor-1268 (PCB-1268)	25.0	50.0	ND		
Our Lab I.D.			Method Blank		
Surrogates	%Rec.Limit		% Rec.		
Decachlorobiphenyl	30-150		53.8		
Tetrachloro-m-xylene	30-150		87.4		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 9

AETL Job Number	Submitted	Client
85541	11/08/2016	CSC-LB

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 111416.02

		QO Daton i	10. 111410.02		
Our Lab I.D.			85541.06		
Client Sample I.D.			SB092-0.5		
Date Sampled			11/06/2016		
Date Prepared			11/14/2016		
Preparation Method			3550B		
Date Analyzed			11/16/2016		
Matrix			Soil		
Units			ug/Kg		
Dilution Factor			2		
Analytes	MDL	PQL	Results		
Aroclor-1016 (PCB-1016)	50	100	ND		
Aroclor-1221 (PCB-1221)	50	100	ND		
Aroclor-1232 (PCB-1232)	50	100	ND		
Aroclor-1242 (PCB-1242)	50	100	ND		
Aroclor-1248 (PCB-1248)	50	100	ND		
Aroclor-1254 (PCB-1254)	50	100	ND		
Aroclor-1260 (PCB-1260)	50	100	ND		
Aroclor-1262 (PCB-1262)	50	100	ND		
Aroclor-1268 (PCB-1268)	50	100	ND		

Comment(s):

85541.06: Analyzed under dilution due to matrix interference

Our Lab I.D.		85541.06		
Surrogates	%Rec.Limit	% Rec.		
Decachlorobiphenyl	30-150	52.0		
Tetrachloro-m-xylene	30-150	77.7		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 10

AETL Job Number	Submitted	Client
85541	11/08/2016	CSC-LB

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 111116.02; LCS: Clean Sand; LCS Prepared: 11/11/2016; LCS Analyzed: 12/06/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	350	70.0	500	353	70.6	<1	50-150	<20	
Aroclor-1260 (PCB-1260)	500	360	72.0	500	352	70.4	2.2	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	32.0	64.0	50.0	34.1	68.2	6.4	30-150	<20	
Tetrachloro-m-xylene	50.0	48.1	96.2	50.0	52.5	105	8.7	30-150	<20	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 11

AETL Job Number	Submitted	Client
85541	11/08/2016	CSC-LB

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 111416.02; Dup or Spiked Sample: 85282.06; LCS: Clean Sand; QC Prepared: 11/14/2016; QC Analyzed: 11/16/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	398	500	823	85.0	500	794	79.2	7.1	50-150	<20
Aroclor-1260 (PCB-1260)	398	500	808	82.0	500	809	82.2	<1	50-150	<20
Surrogates										
Decachlorobiphenyl	44.0	50.0	86.4	84.8	50.0	92.8	97.6	14.0	30-150	<20
Tetrachloro-m-xylene	44.0	50.0	86.4	84.8	50.0	83.2	78.4	7.8	30-150	<20

QC Batch No: 111416.02; Dup or Spiked Sample: 85282.06; LCS: Clean Sand; QC Prepared: 11/14/2016; QC Analyzed: 11/16/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS/LCSD			
Analytes	Concen	Recov	% REC	% Limit			
Aroclor-1016 (PCB-1016)	500	398	79.6	50-150			
Aroclor-1260 (PCB-1260)	500	398	79.6	50-150			
Surrogates							
Decachlorobiphenyl	50.0	44.0	88.0	30-150			
Tetrachloro-m-xylene	50.0	44.0	88.0	30-150			

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

*: In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected. However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (562)435-8080 Attention: Aaron Garrett Number of Pages 5

Date Received 12/19/2016
Date Reported 12/23/2016

Job Number	Order Date	Client
85886	12/19/2016	CSC-LB

Project ID: 612047
Project Name: 612047

Enclosed please find results of analyses of 10 soil samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By: _____ Approved By: _____ C. Raymana

Cyrus Razmara, Ph.D. Laboratory Director

CHEMTEK Environmental Laboratories Inc.

13554 Larwin Circle, Santa Fe Springs, CA 90670

Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)

MJOLM

Job No.:

of

Page:

Sen Port and

86.02 TIME 75 2/16/16 12/19/10 2/3/20 PCB's 8085 X × CAM 17 Metals ANALYSIS REQUIRED Sulfide, Cyanide, O&G pH, Conductivity, Turbidity COMPANY NAME COD \ 122 \ BOD \ 1D2 OXYGENATES (8260 B) SHORT MELL からい Charl's **NOC**² (8500 B) ENTE CARBON CHAIN 8015M TPH D or DRO 8015M TPH G or GRO Preserved CONT 48 hr Other CHANCEL 3 PRINT NAME C. Se 2122 24 hr P.O. No. Ruth REMARKS NON **Turn Around Time** CUSTOMER INFORMATION pH/Time Email: PROJECT INFORMATION FAX: SAMPLED TYPE * EDF TIME して0219 返 SAMPLED arak. SIGNATURE DATE 12-10 X RECEIVED FOR LABORATOR PRY COMPANY NAME: PROJECT CONTACT RELINQUISHED BY: RELINQUISHED BY: PROJECT NAME 3-10 01-10 5-13 505-10 8-9 SITE ADDRESS: RECEIVED BY: SAMPLED BY: ADDRESS PHONE:

NOTE: Samples are discarded 30 days after results are reported unless other arrangements are made.

Distribution: WHITE with report / YELLOW to CHEMTEK / PINK to Courier

*Type: so-Soil GW-Ground Water WW-Waste Water AQ-Aqueous A-Air OT-Other

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (562)435-8080 Attention: Aaron Garrett Project ID: 612047

Date Received 12/19/2016
Date Reported 12/23/2016

Job Number	Order Date	Client
85886	12/19/2016	CSC-LB

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 10 samples with the following specification on 12/19/2016.

Lab ID	Sample ID	Sample Date	Matrix	Quantity Of Containers
85886.01	SO2-10	12/10/2016	Soil	1
85886.02	SO3-10	12/10/2016	Soil	1
85886.03	SO4-10	12/10/2016	Soil	1
85886.04	SO5-10	12/10/2016	Soil	1
85886.05	S06-10	12/10/2016	Soil	1
85886.06	SO7-10	12/10/2016	Soil	1
85886.07	SO8-4	12/10/2016	Soil	1
85886.08	SO8-8	12/10/2016	Soil	1
85886.09	SO9-4	12/10/2016	Soil	1
85886.10	SO9-8	12/10/2016	Soil	1
Metho	od ^ Submethod	Reg 1	Date Priori	ity TAT Units

(8082) 12/26/2016 2 Normal ug/Kg

The samples were analyzed as specified on the enclosed chain of custody.

No analytical non-conformances were encountered.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

	1		C. Raymana	
Checked By:		Approved By:	3	

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (562)435-8080 Attn: Aaron Garrett

Page: 2

Project ID: 612047 Project Name: 612047 AETL Job Number Submitted Client
85886 12/19/2016 CSC-LB

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 122116

		40 2010					
Our Lab I.D.			Method Blank	85886.01	85886.02	85886.03	85886.04
Client Sample I.D.				SO2-10	SO3-10	SO4-10	SO5-10
Date Sampled				12/10/2016	12/10/2016	12/10/2016	12/10/2016
Date Prepared			12/21/2016	12/21/2016	12/21/2016	12/21/2016	12/21/2016
Preparation Method			3550B	3550B	3550B	3550B	3550B
Date Analyzed			12/21/2016	12/21/2016	12/21/2016	12/21/2016	12/21/2016
Matrix			Soil	Soil	Soil	Soil	Soil
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1248 (PCB-1248)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	ND	ND
Our Lab I.D.			Method Blank	85886.01	85886.02	85886.03	85886.04
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	% Rec.	% Rec.
Decachlorobiphenyl	30-150		107	108	105	109	100
Tetrachloro-m-xylene	30-150		115	102	100	111	97.2

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (562)435-8080 Attn: Aaron Garrett

Page: 3

Project ID: 612047 Project Name: 612047

AETL Job Number	Submitted	Client
85886	12/19/2016	CSC-LB

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 122116

Our Lab I.D.			85886.05	85886.06	85886.07	85886.08	85886.09
Client Sample I.D.			SO6-10	SO7-10	SO8-4	SO8-8	SO9-4
Date Sampled			12/10/2016	12/10/2016	12/10/2016	12/10/2016	12/10/2016
Date Prepared			12/21/2016	12/21/2016	12/21/2016	12/21/2016	12/21/2016
Preparation Method			3550B	3550B	3550B	3550B	3550B
Date Analyzed			12/21/2016	12/21/2016	12/21/2016	12/21/2016	12/21/2016
Matrix			Soil	Soil	Soil	Soil	Soil
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1248 (PCB-1248)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	ND	ND
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	ND	ND
Our Lab I.D.			85886.05	85886.06	85886.07	85886.08	85886.09
Surrogates	%Rec.Limit		% Rec.				
Decachlorobiphenyl	30-150		76.8	73.8	106	102	96.4
Tetrachloro-m-xylene	30-150		76.6	76.4	101	107	119

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 4

Project ID: 612047 Project Name: 612047 AETL Job Number Submitted Client
85886 12/19/2016 CSC-LB

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 122116

QC Balcii No. 122116										
Our Lab I.D.			85886.10							
Client Sample I.D.			SO9-8							
Date Sampled			12/10/2016							
Date Prepared			12/21/2016							
Preparation Method			3550B							
Date Analyzed			12/21/2016							
Matrix			Soil							
Units		ug/Kg								
Dilution Factor			1							
Analytes	MDL	PQL	Results							
Aroclor-1016 (PCB-1016)	25.0	50.0	ND							
Aroclor-1221 (PCB-1221)	25.0	50.0	ND							
Aroclor-1232 (PCB-1232)	25.0	50.0	ND							
Aroclor-1242 (PCB-1242)	25.0	50.0	ND							
Aroclor-1248 (PCB-1248)	25.0	50.0	ND							
Aroclor-1254 (PCB-1254)	25.0	50.0	ND							
Aroclor-1260 (PCB-1260)	25.0	50.0	ND							
Aroclor-1262 (PCB-1262)	25.0	50.0	ND							
Aroclor-1268 (PCB-1268)	25.0	50.0	ND							
Our Lab I.D.			85886.10							
Surrogates	%Rec.Limit		% Rec.							
Decachlorobiphenyl	30-150		110							
Tetrachloro-m-xylene	30-150		126							

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

Clark Seif Clark, Inc 110 Pine Ave Suite 925 Long Beach, CA 90802

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 5

Project ID: 612047 Project Name: 612047

AETL Job Number	Submitted	Client
85886	12/19/2016	CSC-LB

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 122116; Dup or Spiked Sample: 85886.01; LCS: Clean Sand; QC Prepared: 12/21/2016; QC Analyzed: 12/21/2016; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	500	328	65.6	500	304	60.8	7.6	50-150	<20
Aroclor-1260 (PCB-1260)	0.00	500	365	73.0	500	392	78.4	7.1	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	50.0	38.1	76.2	50.0	38.2	76.4	<1	30-150	<20
Tetrachloro-m-xylene	0.00	50.0	42.4	84.8	50.0	40.0	80.0	5.8	30-150	<20

QC Batch No: 122116; Dup or Spiked Sample: 85886.01; LCS: Clean Sand; QC Prepared: 12/21/2016; QC Analyzed: 12/21/2016; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	305	61.0	500	278	55.6	9.3	50-150	<20	
Aroclor-1260 (PCB-1260)	500	372	74.4	500	368	73.6	1.1	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	36.2	72.4	50.0	38.9	77.8	7.2	30-150	<20	
Tetrachloro-m-xylene	50.0	38.9	77.8	50.0	41.0	81.9	5.1	30-150	<20	

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

*: In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected. However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

Clark Seif Clark, Inc

4010 Watson Plaza Drive Suite 170

Lakewood, CA 90712-

Telephone: (562)435-8080 Attention: Aaron Garrett

Number of Pages 17

07/25/2017 Date Received Date Reported 08/03/2017

Job Number	Order Date	Client
88704	07/25/2017	CSC-LB

Project ID: 707074

Project Name: North Hollywood High

Enclosed please find results of analyses of 27 soil samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By:

Approved By: C. Raymona

Cyrus Razmara, Ph.D. Laboratory Director

CHEMTEK Environmental Laboratories Inc.

CHAIN OF CUSTODY RECORD

13554 Larwin Circle, Santa Fe Springs, CA 90670

300 No.: \$870 Y

Page:

Tel. (562) 926-9848 FAX (562) 926-8324 Email: ChemtekLabs@hotmail.com

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)

CUSTOMER INFORMATION	NOI						7	L
CAMBANY MAINT.					ANALYSIS REQUIRED	0		
Chainee ring				ТЯС	,			
CONTACT: HAYON GANGETT	Email: A Garrett Ocsceng. com			OHS	dity			
ADDRESS:					_			
PHONE: FAX:	X:	СВС	110	097 097	uT ,	_		
PROJECT IN	NO	_		_		s		
PROJECT NAME NOVIM Hellywood High -	High - 707047 P.O. No.		AH: (8 0			etal		
			_					i:
SAMPLED BY: CSC	EDF Turn Around Time NORM 24 hr 48 hr Other				_	S, €	, 2	
DATE TIME								
	Time REMARKS Preserved CONT							
200- 11196				\$ \$ \$	10 %	χ		
				C 2 X	7.07	×		
3 58 III - 2 . 5 TheliT				かかか	(s.)	>		
- 211 86				2730	50.7	\ <u>\</u>		
5 58112-1.5	C Walder			0488	グイ	X		
6 5/31/2 - 2.5				8830	34.06	×		
7 781/3 - 0.5				LEE	tok	X	×	
				8370	\$\frac{\infty}{\infty}			
				8870	ろうべ	>		
5514-0S	Run dupliete for OCP's			83.76	ر ا ا ا	$\langle \lambda$		
1. 5/2/1/4- 1.3				2830	\ \ \ \	×		
2.59114-2.5				833	21.72	×		
				0686	7.73	X		
				88% C	h/ 50	×		
15 43115-2.3			di di	X830	4.15	X		
SIGNATURE	PRINT NAME		,	COMPANY NAME	AE		DATE	TIME
RELINQUISHED BY:	James Mein		Chu	なん	190		Hash.	1030
RECEIVED BY: / Malk	atman p.			Kan			nlyde	1/13.0
RELINQUISHED BY:	C. ROTOLIAN		کِ	- 172				
RECEIVED FOR LABORATORY BY:	1		5 6	1			15% (7	ئر <u>ک</u> ر/
	seen chand	7	T	\.			4/125/13	1330
NOIE: Samples are discarded 30 days after results are reported unless other arrangements are made	s other arrangements are made.	Distribution: WHITE with report	NHITE with re	$\overline{}$	YELLOW to CHEMTEK / PINK to courier	K / PINK †	o courier	

*Type: so-Soil GW-Ground Water WW-Waste Water AQ-Aqueous A-Air OT-Other

CHEMTEK Environmental Laboratories Inc.

13554 Larwin Circle, Santa Fe Springs, CA 90670

Tel. (562) 926-9848 FAX (562) 926-8324

Job No.:

CHAIN OF CUSTODY RECORD

Email: ChemtekLabs@hotmail.com

CA Dept of Health Accredited. (ELAP No. 1435) & Mobile Lab (ELAP No. 2629)

1330 TIME Has/A 1330 MO 1031 2 of 2 PCBS 1/22/17 コスロ DATE 7/2 J.d 20 Page: CAM 17 Metals 8834.26 83701.22 33704. 20 8374.23 887cm. 24 ANALYSIS REQUIRED 88704. 25 6870x19 61-24-CB としてのため 2.40t8X Sulfide, Cyanide, O&G 88704. 37304 J^r pH, Conductivity, Turbidity COMPANY NAME COD \ 122 \ BOD \ 1D2 nustel アロア をよう OXYGENATES (8260 B) SHORT **AOC2 (8590 B) ENTE** CARBON CHAIN 8015M TPH D or DRO 8015M TPH G or GRO NO. OF Email: A Carmit Prosceng, com Moon A Garrett Occieng with Other Preserved involue to Apron garett. OCP's enly 0 duty and 48 hr NORM 24 hr 1 ames C-242W142 Chardin P.O. No. É REMARKS emer! HIDLOL- 45/H Run cholicate EDF Turn Around Time Please **CUSTOMER INFORMATION** PROJECT INFORMATION SAMPLED SAMPLED TYPE * DH/TIME Engineering Sc 20 20 2 PROJECT CONTACT: Aavon Gainett Holly wind TIME Silk 100/17 100/17 SIGNATURE 11/00 DATE 1/20/17 RECEIVED FOR LABORATORY BY 45BIM-0.5 5 98 17 - 1.5 SB118- 2.5 10 513 119-0.5 12 SB 119- 2.5 7 98 118 - 0,5 COMPANY NAME: 1 SB119- 1.5 6 Spill - 2. PROJECT NAME 58/16-2. SAMPLE ID 58116-01 8 SE118-1. RELINQUISHED BY: 515116-11 RELINQUISHED BY: SITE ADDRESS: SAMPLED BY: RECEIVED BY: ADDRESS PHONE 4 15

NOTE: Samples are discarded 30 days after results are reported unless other arrangements are made.

Distribution: WHITE with report / YELLOW to CHEMTEK / PINK to courier

*Type: so-Soil GW-Ground Water WW-Waste Water AQ-Aqueous A-Air OT-Other

2834 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

COOLER RECEIPT FORM

COOLER RECEIT I FORTY								
Client Name: Chemtel FNI	1. L	ds						
Project Name:			£:					
AETL Job Number: 98704		1	1 1					
	eived t	y: Jean	Claude					
Carrier: X AETL Courier	\Box G	SO ☐ FedE	Ex UPS					
□Others:								
, 1								
		I (Specify):	W.					
Inside temperature of shipping container No 1:3., No 2: , No 3:								
Type of sample containers: ☐ VOA, ☐ Glass bottles, Wide mouth jars, ☐ HDPE bottles,								
☐ Metal sleeves, ☐ Others (Specify):								
How are samples preserved: None, Ice, Blue Ice, Dry Ice								
None, HNO _{3, 1}	NaOH,	ZnOAc, HC	Cl, Na ₂ S ₂ O ₃ , MeOH					
Other (Specify):								
÷								
II.	Yes	No, explain below	Name, if client was notified.					
1. Are the COCs Correct?	X							
2. Are the Sample labels legible?	X							
3. Do samples match the COC?	X							
4. Are the required analyses clear?	X							
5. Is there enough samples for required analysis?								
6. Are samples sealed with evidence tape?	MA							
7. Are sample containers in good condition?	×							
8. Are samples preserved?	×		E E					
9. Are samples preserved properly for the	1							
intended analysis?								
10. Are the VOAs free of headspace?	M							
11. Are the jars free of headspace?								
Explain all "No" answers for above questions:								
			31					
		-						

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 A Ordered By

Clark Seif Clark, Inc

4010 Watson Plaza Drive Suite 170

Lakewood, CA 90712-

Telephone: (562)435-8080 Attention: Aaron Garrett Project ID: 707074

Date Received 07/25/2017 Date Reported 08/03/2017

Job Number	Order Date	Client
88704	07/25/2017	CSC-LB

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 27 samples with the following specification on 07/25/2017.

Lab ID	Sample ID	Sample Date	Matri	x	Qua	ntity Of	Containers
88704.01	SB111-0.5	07/20/2017	Soil			1	
88704.02	SB111-1.5	07/20/2017	Soil			1	
88704.03	SB111-2.5	07/20/2017	Soil			1	
88704.04	SB112-0.5	07/20/2017	Soil			1	
88704.05	SB112-1.5	07/20/2017	Soil			1	
88704.06	SB112-2.5	07/20/2017	Soil			1	
88704.08	SB113-1.5	07/20/2017	Soil			1	
88704.09	SB113-2.5	07/20/2017	Soil			1	
88704.10	SB114-0.5	07/20/2017	Soil			1	
88704.11	SB114-1.5	07/20/2017	Soil			1	
88704.12	SB114-2.5	07/20/2017	Soil			1	
88704.13	SB115-0.5	07/20/2017	Soil			1	
88704.14	SB115-1.5	07/20/2017	Soil			1	
88704.15	SB115-2.5	07/20/2017	Soil			1	
88704.17	SB116-1.5	07/20/2017	Soil			1	
88704.18	SB116-2.5	07/20/2017	Soil			1	
88704.20	SB117-1.5	07/20/2017	Soil			1	
88704.21	SB117-2.5	07/20/2017	Soil			1	
88704.22	SB118-0.5	07/20/2017	Soil			1	
88704.23	SB118-1.5	07/20/2017	Soil			1	
88704.24	SB118-2.5	07/20/2017	Soil			1	
88704.25	SB119-0.5	07/20/2017	Soil			1	
88704.26	SB119-1.5	07/20/2017	Soil			1	
88704.27	SB119-2.5	07/20/2017	Soil			1	
Metho	od ^ Submethod	Req 1	Date	Priority	TAT	Units	
(90914		00/01/	2017	2	M 1	/T/	

(8081A)08/01/2017 2 Normal ug/Kg

Continued

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page: 1 B
Ordered By

Clark Seif Clark, Inc

4010 Watson Plaza Drive Suite 170

Lakewood, CA 90712-

Telephone: (562)435-8080 Attention: Aaron Garrett Project ID: 707074

Date Received 07/25/2017
Date Reported 08/03/2017

Job Number	Order Date	Client
88704	07/25/2017	CSC-LB

CERTIFICATE OF ANALYSIS CASE NARRATIVE

Lab ID	Sample ID	Sample Date	Matrix	Quantity Of Containers
88704.07	SB113-0.5	07/20/2017	Soil	1
88704.16	SB116-0.5	07/20/2017	Soil	1
88704.19	SB117-0.5	07/20/2017	Soil	1

Method ^ Submethod	Req Date	Priority	TAT	Units
(8081A)	08/01/2017	2	Normal	ug/Kg
(8082)	08/01/2017	2	Normal	ug/Kg

The samples were analyzed as specified on the enclosed chain of custody. No analytical non-conformances were encountered.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

Checked By: _____ Approved By: _____

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 4010 Watson Plaza Drive Suite 170

Lakewood, CA 90712-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 2

Project ID: 707074

Project Name: North Hollywood High

AETL Job Number Submitted Client
88704 07/25/2017 CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 072617EB1

Our Lab I.D.			Method Blank	88704.01	88704.02	88704.03	88704.04
Client Sample I.D.				SB111-0.5	SB111-1.5	SB111-2.5	SB112-0.5
Date Sampled				07/20/2017	07/20/2017	07/20/2017	07/20/2017
Date Prepared			07/26/2017	07/26/2017	07/26/2017	07/26/2017	07/26/2017
Preparation Method			3550B	3550B	3550B	3550B	3550B
Date Analyzed			07/26/2017	07/26/2017	07/26/2017	07/26/2017	07/26/2017
Matrix			Soil	Soil	Soil	Soil	Soil
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Aldrin	1.0	2.0	ND	ND	ND	ND	ND
Chlordane (Total)	1.0	2.0	ND	ND	ND	ND	ND
Chlordane (alpha)	1.0	2.0	ND	ND	ND	ND	ND
4,4'-DDD (DDD)	1.0	2.0	ND	ND	ND	ND	ND
4,4'-DDE (DDE)	1.0	2.0	ND	ND	ND	ND	ND
4,4'-DDT (DDT)	1.0	2.0	ND	ND	ND	ND	ND
Dieldrin	1.0	2.0	ND	ND	ND	ND	ND
Endosulfan 1	1.0	2.0	ND	ND	ND	ND	ND
Endosulfan 11	1.0	2.0	ND	ND	ND	ND	ND
Endosulfan sulfate	1.0	2.0	ND	ND	ND	ND	ND
Endrin	1.0	2.0	ND	ND	ND	ND	ND
Endrin aldehyde	1.0	2.0	ND	ND	ND	ND	ND
Endrin ketone	1.0	2.0	ND	ND	ND	ND	ND
Chlordane (gamma)	1.0	2.0	ND	ND	ND	ND	ND
Heptachlor	1.0	2.0	ND	ND	ND	ND	ND
Heptachlor epoxide	1.0	2.0	ND	ND	ND	ND	ND
alpha-Hexachlorocyclohexane (Alpha-BHC)	1.0	2.0	ND	ND	ND	ND	ND
beta-Hexachlorocyclohexane (Betta-BHC)	1.0	2.0	ND	ND	ND	ND	ND
delta-Hexachlorocyclohexane (Delta-BHC)	1.0	2.0	ND	ND	ND	ND	ND
gamma-Hexachlorocyclohexane	1.0	2.0	ND	ND	ND	ND	ND
(Gamma-BHC, Lindane)							
Methoxychlor	5.0	10.0	ND	ND	ND	ND	ND
Toxaphene	85.0	170.0	ND	ND	ND	ND	ND

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 3

Project ID: 707074

Project Name: North Hollywood High

AETL Job Number Submitted Client
88704

07/25/2017 CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

Our Lab I.D.		Method Blank	88704.01	88704.02	88704.03	88704.04
Surrogates	%Rec.Limit	% Rec.	% Rec.	% Rec.	% Rec.	% Rec.
Decachlorobiphenyl	30-150	71.0	72.2	79.0	65.2	84.8
Tetrachloro-m-xylene	30-150	59.8	69.4	69.8	68.6	77.0

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 4010 Watson Plaza Drive Suite 170

Lakewood, CA 90712-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 4

Project ID: 707074

Project Name: North Hollywood High

AETL Job Number Submitted Client
88704 07/25/2017 CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 072617EB1

Our Lab I.D.			88704.05	88704.06	88704.07	88704.08	88704.09
Client Sample I.D.			SB112-1.5	SB112-2.5	SB113-0.5	SB113-1.5	SB113-2.5
Date Sampled			07/20/2017	07/20/2017	07/20/2017	07/20/2017	07/20/2017
Date Prepared			07/26/2017	07/26/2017	07/26/2017	07/26/2017	07/26/2017
Preparation Method			3550B	3550B	3550B	3550B	3550B
Date Analyzed			07/26/2017	07/26/2017	07/26/2017	07/26/2017	07/26/2017
Matrix			Soil	Soil	Soil	Soil	Soil
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Aldrin	1.0	2.0	ND	ND	ND	ND	ND
Chlordane (Total)	1.0	2.0	ND	ND	ND	ND	ND
Chlordane (alpha)	1.0	2.0	ND	ND	ND	ND	ND
4,4'-DDD (DDD)	1.0	2.0	ND	ND	ND	ND	ND
4,4'-DDE (DDE)	1.0	2.0	ND	ND	ND	ND	ND
4,4'-DDT (DDT)	1.0	2.0	ND	ND	ND	ND	ND
Dieldrin	1.0	2.0	ND	ND	ND	ND	ND
Endosulfan 1	1.0	2.0	ND	ND	ND	ND	ND
Endosulfan 11	1.0	2.0	ND	ND	ND	ND	ND
Endosulfan sulfate	1.0	2.0	ND	ND	ND	ND	ND
Endrin	1.0	2.0	ND	ND	ND	ND	ND
Endrin aldehyde	1.0	2.0	ND	ND	ND	ND	ND
Endrin ketone	1.0	2.0	ND	ND	ND	ND	ND
Chlordane (gamma)	1.0	2.0	ND	ND	ND	ND	ND
Heptachlor	1.0	2.0	ND	ND	ND	ND	ND
Heptachlor epoxide	1.0	2.0	ND	ND	ND	ND	ND
alpha-Hexachlorocyclohexane (Alpha-BHC)	1.0	2.0	ND	ND	ND	ND	ND
beta-Hexachlorocyclohexane (Betta-BHC)	1.0	2.0	ND	ND	ND	ND	ND
delta-Hexachlorocyclohexane (Delta-BHC)	1.0	2.0	ND	ND	ND	ND	ND
gamma-Hexachlorocyclohexane	1.0	2.0	ND	ND	ND	ND	ND
(Gamma-BHC, Lindane)							
Methoxychlor	5.0	10.0	ND	ND	ND	ND	ND
Toxaphene	85.0	170.0	ND	ND	ND	ND	ND

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 5

Project ID: 707074

Project Name: North Hollywood High

AETL Job Number Submitted Client
88704

07/25/2017 CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

Our Lab I.D.		88704.05	88704.06	88704.07	88704.08	88704.09
Surrogates	%Rec.Limit	% Rec.				
Decachlorobiphenyl	30-150	76.8	66.8	75.2	75.0	84.8
Tetrachloro-m-xylene	30-150	64.8	65.6	57.6	51.8	50.0

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 4010 Watson Plaza Drive Suite 170

Lakewood, CA 90712-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 6

Project ID: 707074

Project Name: North Hollywood High

AETL Job Number Submitted Client
88704 07/25/2017 CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 072617EB1

Our Lab I.D.			88704.10	88704.11	88704.12	88704.13	88704.14
Client Sample I.D.			SB114-0.5	SB114-1.5	SB114-2.5	SB115-0.5	SB115-1.5
Date Sampled			07/20/2017	07/20/2017	07/20/2017	07/20/2017	07/20/2017
Date Prepared			07/26/2017	07/26/2017	07/26/2017	07/26/2017	07/26/2017
Preparation Method			3550B	3550B	3550B	3550B	3550B
Date Analyzed			07/26/2017	07/26/2017	07/26/2017	07/26/2017	07/26/2017
Matrix			Soil	Soil	Soil	Soil	Soil
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Aldrin	1.0	2.0	ND	ND	ND	ND	ND
Chlordane (Total)	1.0	2.0	23.4	ND	ND	6.28	ND
Chlordane (alpha)	1.0	2.0	9.13	ND	ND	2.66	ND
4,4'-DDD (DDD)	1.0	2.0	2.93	ND	ND	ND	ND
4,4'-DDE (DDE)	1.0	2.0	3.42	ND	ND	ND	ND
4,4'-DDT (DDT)	1.0	2.0	28.6	ND	ND	ND	ND
Dieldrin	1.0	2.0	1.08J	ND	ND	ND	ND
Endosulfan 1	1.0	2.0	ND	ND	ND	ND	ND
Endosulfan 11	1.0	2.0	ND	ND	ND	ND	ND
Endosulfan sulfate	1.0	2.0	ND	ND	ND	ND	ND
Endrin	1.0	2.0	ND	ND	ND	ND	ND
Endrin aldehyde	1.0	2.0	ND	ND	ND	ND	ND
Endrin ketone	1.0	2.0	ND	ND	ND	ND	ND
Chlordane (gamma)	1.0	2.0	14.3	ND	ND	3.62	ND
Heptachlor	1.0	2.0	ND	ND	ND	ND	ND
Heptachlor epoxide	1.0	2.0	ND	ND	ND	ND	ND
alpha-Hexachlorocyclohexane (Alpha-BHC)	1.0	2.0	ND	ND	ND	ND	ND
beta-Hexachlorocyclohexane (Betta-BHC)	1.0	2.0	ND	ND	ND	ND	ND
delta-Hexachlorocyclohexane (Delta-BHC)	1.0	2.0	ND	ND	ND	ND	ND
gamma-Hexachlorocyclohexane	1.0	2.0	ND	ND	ND	ND	ND
(Gamma-BHC, Lindane)							
Methoxychlor	5.0	10.0	ND	ND	ND	ND	ND
Toxaphene	85.0	170.0	ND	ND	ND	ND	ND

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 7

Project ID: 707074

Project Name: North Hollywood High

AETL Job Number Submitted Client
88704

07/25/2017 CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

Our Lab I.D.		88704.10	88704.11	88704.12	88704.13	88704.14
Surrogates	%Rec.Limit	% Rec.				
Decachlorobiphenyl	30-150	67.0	62.2	72.2	59.8	62.2
Tetrachloro-m-xylene	30-150	67.0	61.0	43.4	47.2	47.2

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 4010 Watson Plaza Drive Suite 170

Lakewood, CA 90712-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 8

Project ID: 707074

Project Name: North Hollywood High

AETL Job Number Submitted Client
88704 07/25/2017 CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 072617EB1

Our Lab I.D.			88704.15	88704.16	88704.17	88704.18	88704.19
Client Sample I.D.			SB115-2.5	SB116-0.5	SB116-1.5	SB116-2.5	SB117-0.5
Date Sampled			07/20/2017	07/20/2017	07/20/2017	07/20/2017	07/20/2017
Date Prepared			07/26/2017	07/26/2017	07/26/2017	07/26/2017	07/26/2017
Preparation Method			3550B	3550B	3550B	3550B	3550B
Date Analyzed			07/26/2017	07/26/2017	07/26/2017	07/26/2017	07/26/2017
Matrix			Soil	Soil	Soil	Soil	Soil
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Aldrin	1.0	2.0	ND	ND	ND	ND	ND
Chlordane (Total)	1.0	2.0	ND	39.0	4.76	9.74	ND
Chlordane (alpha)	1.0	2.0	ND	17.8	2.11	3.96	ND
4,4'-DDD (DDD)	1.0	2.0	ND	ND	ND	ND	ND
4,4'-DDE (DDE)	1.0	2.0	ND	2.64	ND	1.37J	ND
4,4'-DDT (DDT)	1.0	2.0	ND	ND	ND	ND	ND
Dieldrin	1.0	2.0	ND	ND	ND	ND	ND
Endosulfan 1	1.0	2.0	ND	ND	ND	ND	ND
Endosulfan 11	1.0	2.0	ND	ND	ND	ND	ND
Endosulfan sulfate	1.0	2.0	ND	ND	ND	ND	ND
Endrin	1.0	2.0	ND	ND	ND	ND	ND
Endrin aldehyde	1.0	2.0	ND	ND	ND	ND	ND
Endrin ketone	1.0	2.0	ND	ND	ND	ND	ND
Chlordane (gamma)	1.0	2.0	ND	21.2	2.65	5.78	ND
Heptachlor	1.0	2.0	ND	ND	ND	ND	ND
Heptachlor epoxide	1.0	2.0	ND	ND	ND	ND	ND
alpha-Hexachlorocyclohexane (Alpha-BHC)	1.0	2.0	ND	ND	ND	ND	ND
beta-Hexachlorocyclohexane (Betta-BHC)	1.0	2.0	ND	ND	ND	ND	ND
delta-Hexachlorocyclohexane (Delta-BHC)	1.0	2.0	ND	ND	ND	ND	ND
gamma-Hexachlorocyclohexane	1.0	2.0	ND	ND	ND	ND	ND
(Gamma-BHC, Lindane)							
Methoxychlor	5.0	10.0	ND	ND	ND	ND	ND
Toxaphene	85.0	170.0	ND	ND	ND	ND	ND

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 9

Project ID: 707074

Project Name: North Hollywood High

AETL Job Number Submitted Client
88704

07/25/2017 CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

Our Lab I.D.		88704.15	88704.16	88704.17	88704.18	88704.19
Surrogates	%Rec.Limit	% Rec.				
Decachlorobiphenyl	30-150	76.6	77.4	70.2	57.8	83.6
Tetrachloro-m-xylene	30-150	52.4	54.4	55.8	48.4	43.2

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 4010 Watson Plaza Drive Suite 170

Lakewood, CA 90712-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 10

Project ID: 707074

Project Name: North Hollywood High

AETL Job Number Submitted Client
88704 07/25/2017 CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 072617EB2

		QO Baton N	0: 0/261/EBZ				
Our Lab I.D.			Method Blank	88704.20	88704.21	88704.22	88704.23
Client Sample I.D.				SB117-1.5	SB117-2.5	SB118-0.5	SB118-1.5
Date Sampled				07/20/2017	07/20/2017	07/20/2017	07/20/2017
Date Prepared			07/26/2017	07/26/2017	07/26/2017	07/26/2017	07/26/2017
Preparation Method			3550B	3550B	3550B	3550B	3550B
Date Analyzed	Date Analyzed			07/27/2017	07/27/2017	07/27/2017	07/27/2017
Matrix			Soil	Soil	Soil	Soil	Soil
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Aldrin	1.0	2.0	ND	ND	ND	ND	ND
Chlordane (Total)	1.0	2.0	ND	ND	ND	2.56	ND
Chlordane (alpha)	1.0	2.0	ND	ND	ND	1.08J	ND
4,4'-DDD (DDD)	1.0	2.0	ND	ND	ND	ND	ND
4,4'-DDE (DDE)	1.0	2.0	ND	ND	ND	1.71J	ND
4,4'-DDT (DDT)	1.0	2.0	ND	ND	ND	ND	ND
Dieldrin	1.0	2.0	ND	ND	ND	ND	ND
Endosulfan 1	1.0	2.0	ND	ND	ND	ND	ND
Endosulfan 11	1.0	2.0	ND	ND	ND	ND	ND
Endosulfan sulfate	1.0	2.0	ND	ND	ND	ND	ND
Endrin	1.0	2.0	ND	ND	ND	ND	ND
Endrin aldehyde	1.0	2.0	ND	ND	ND	ND	ND
Endrin ketone	1.0	2.0	ND	ND	ND	ND	ND
Chlordane (gamma)	1.0	2.0	ND	ND	ND	1.48J	ND
Heptachlor	1.0	2.0	ND	ND	ND	ND	ND
Heptachlor epoxide	1.0	2.0	ND	ND	ND	ND	ND
alpha-Hexachlorocyclohexane (Alpha-BHC)	1.0	2.0	ND	ND	ND	ND	ND
beta-Hexachlorocyclohexane (Betta-BHC)	1.0	2.0	ND	ND	ND	ND	ND
delta-Hexachlorocyclohexane (Delta-BHC)	1.0	2.0	ND	ND	ND	ND	ND
gamma-Hexachlorocyclohexane	1.0	2.0	ND	ND	ND	ND	ND
(Gamma-BHC, Lindane)							
Methoxychlor	5.0	10.0	ND	ND	ND	ND	ND
Toxaphene	85.0	170.0	ND	ND	ND	ND	ND

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 11

Project ID: 707074

Project Name: North Hollywood High

AETL Job Number Submitted Client
88704

07/25/2017 CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

Our Lab I.D.		Method Blan	k 88704.20	88704.21	88704.22	88704.23
Surrogates	%Rec.Limit	% Rec.	% Rec.	% Rec.	% Rec.	% Rec.
Decachlorobiphenyl	30-150	90.8	83.4	86.8	55.8	59.4
Tetrachloro-m-xylene	30-150	53.4	52.4	62.8	55.6	57.4

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 4010 Watson Plaza Drive Suite 170

Lakewood, CA 90712-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 12

Project ID: 707074

Project Name: North Hollywood High

 AETL Job Number
 Submitted
 Client

 88704
 07/25/2017
 CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 072617EB2

Our Lab I.D.			88704.24	88704.25	88704.26	88704.27	
Client Sample I.D.			SB118-2.5	SB119-0.5	SB119-1.5	SB119-2.5	
Date Sampled			07/20/2017	07/20/2017	07/20/2017	07/20/2017	
Date Prepared			07/26/2017	07/26/2017	07/26/2017	07/26/2017	
Preparation Method			3550B	3550B	3550B	3550B	
Date Analyzed			07/27/2017	07/27/2017	07/27/2017	07/27/2017	
Matrix			Soil	Soil	Soil	Soil	
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	
Dilution Factor			1	1	1	1	
Analytes	MDL	PQL	Results	Results	Results	Results	
Aldrin	1.0	2.0	ND	ND	ND	ND	
Chlordane (Total)	1.0	2.0	ND	3.06	ND	ND	
Chlordane (alpha)	1.0	2.0	ND	1.20J	ND	ND	
4,4'-DDD (DDD)	1.0	2.0	ND	ND	ND	ND	
4,4'-DDE (DDE)	1.0	2.0	ND	ND	ND	ND	
4,4'-DDT (DDT)	1.0	2.0	ND	ND	ND	ND	
Dieldrin	1.0	2.0	ND	ND	ND	ND	
Endosulfan 1	1.0	2.0	ND	ND	ND	ND	
Endosulfan 11	1.0	2.0	ND	ND	ND	ND	
Endosulfan sulfate	1.0	2.0	ND	ND	ND	ND	
Endrin	1.0	2.0	ND	ND	ND	ND	
Endrin aldehyde	1.0	2.0	ND	ND	ND	ND	
Endrin ketone	1.0	2.0	ND	ND	ND	ND	
Chlordane (gamma)	1.0	2.0	ND	1.86J	ND	ND	
Heptachlor	1.0	2.0	ND	ND	ND	ND	
Heptachlor epoxide	1.0	2.0	ND	ND	ND	ND	
alpha-Hexachlorocyclohexane (Alpha-BHC)	1.0	2.0	ND	ND	ND	ND	
beta-Hexachlorocyclohexane (Betta-BHC)	1.0	2.0	ND	ND	ND	ND	
delta-Hexachlorocyclohexane (Delta-BHC)	1.0	2.0	ND	ND	ND	ND	
gamma-Hexachlorocyclohexane	1.0	2.0	ND	ND	ND	ND	
(Gamma-BHC, Lindane)							
Methoxychlor	5.0	10.0	ND	ND	ND	ND	
Toxaphene	85.0	170.0	ND	ND	ND	ND	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Page: 13

Project ID: 707074

Project Name: North Hollywood High

AETL Job Number Submitted Client
88704

07/25/2017 CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

Our Lab I.D.		88704.24	88704.25	88704.26	88704.27	
Surrogates	%Rec.Limit	% Rec.	% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150	61.8	60.8	50.4	60.4	
Tetrachloro-m-xylene	30-150	64.8	66.0	62.4	69.2	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Clark Seif Clark, Inc 4010 Watson Plaza Drive Suite 170

Lakewood, CA 90712-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 14

Project ID: 707074

Project Name: North Hollywood High

AETL Job Number Submitted Client
88704 07/25/2017 CSC-LB

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 072617

Our Lab I.D.			Method Blank	88704.07	88704.16	88704.19	
Client Sample I.D.				SB113-0.5	SB116-0.5	SB117-0.5	
Date Sampled				07/20/2017	07/20/2017	07/20/2017	
Date Prepared		07/26/2017	07/26/2017	07/26/2017	07/26/2017		
Preparation Method			3550B	3550B	3550B	3550B	
Date Analyzed			07/27/2017	07/27/2017	07/27/2017	07/27/2017	
Matrix			Soil	Soil	Soil	Soil	
Units			ug/Kg	ug/Kg	ug/Kg	ug/Kg	
Dilution Factor			1	1	1	1	
Analytes	MDL	PQL	Results	Results	Results	Results	
Aroclor-1016 (PCB-1016)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1221 (PCB-1221)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1232 (PCB-1232)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1242 (PCB-1242)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1248 (PCB-1248)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1254 (PCB-1254)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1260 (PCB-1260)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1262 (PCB-1262)	25.0	50.0	ND	ND	ND	ND	
Aroclor-1268 (PCB-1268)	25.0	50.0	ND	ND	ND	ND	
Our Lab I.D.			Method Blank	88704.07	88704.16	88704.19	
Surrogates	%Rec.Limit		% Rec.	% Rec.	% Rec.	% Rec.	
Decachlorobiphenyl	30-150		119	101	108	104	
Tetrachloro-m-xylene	30-150		107	94.0	89.8	76.0	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

Clark Seif Clark, Inc 4010 Watson Plaza Drive Suite 170

Lakewood, CA 90712-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 15

Project ID: 707074

Project Name: North Hollywood High

AETL Job Number Submitted Client
88704 07/25/2017 CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 072617EB1; Dup or Spiked Sample: 88704.05; LCS: Clean Sand; QC Prepared: 07/26/2017; QC Analyzed: 07/26/2017; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aldrin	0.00	20.0	18.7	93.5	20.0	18.5	92.5	1.1	40-150	<40
4,4'-DDT (DDT)	0.00	50.0	36.8	73.6	50.0	37.2	74.4	1.1	40-150	<40
Dieldrin	0.00	50.0	47.8	95.6	50.0	46.4	92.8	3.0	40-150	<40
Endrin	0.00	50.0	45.0	90.0	50.0	40.9	81.8	9.5	40-150	<40
Heptachlor	0.00	20.0	13.5	67.5	20.0	13.1	65.5	3.0	40-150	<40
gamma-Hexachlorocyclohexane	0.00	20.0	20.2	101	20.0	23.4	117	14.7	40-150	<40
(Gamma-BHC, Lindane)										
Surrogates										
Decachlorobiphenyl	0.00	50.0	41.4	82.8	50.0	38.6	77.2	7.0	30-150	<40
Tetrachloro-m-xylene	0.00	50.0	35.7	71.4	50.0	35.3	70.6	1.1	30-150	<40

QC Batch No: 072617EB1; Dup or Spiked Sample: 88704.05; LCS: Clean Sand; QC Prepared: 07/26/2017; QC Analyzed: 07/26/2017; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aldrin	20.0	16.8	84.0	20.0	17.5	87.5	4.1	50-150	<40	
4,4'-DDT (DDT)	50.0	25.4	50.8	50.0	26.9	53.8	5.7	50-150	<40	
Dieldrin	50.0	42.8	85.6	50.0	43.2	86.4	<1	50-150	<40	
Endrin	50.0	28.8	57.6	50.0	31.6	63.2	9.3	50-150	<40	
Heptachlor	20.0	12.5	62.5	20.0	12.7	63.5	1.6	50-150	<40	
gamma-Hexachlorocyclohexane	20.0	17.7	88.5	20.0	18.2	91.0	2.8	50-150	<40	
(Gamma-BHC, Lindane)										
Surrogates										
Decachlorobiphenyl	50.0	34.8	69.6	50.0	36.7	73.4	5.3	30-150	<40	
Tetrachloro-m-xylene	50.0	33.5	67.0	50.0	33.1	66.2	1.2	30-150	<40	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

Clark Seif Clark, Inc 4010 Watson Plaza Drive Suite 170

Lakewood, CA 90712-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 16

Project ID: 707074

Project Name: North Hollywood High

AETL Job Number Submitted Client
88704 07/25/2017 CSC-LB

Method: (8081A), Organochlorine Pesticides by GC

QC Batch No: 072617EB2; Dup or Spiked Sample: 88704.27; LCS: Clean Sand; QC Prepared: 07/26/2017; QC Analyzed: 07/27/2017; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aldrin	0.00	20.0	17.8	89.0	20.0	18.3	91.5	2.8	40-150	<40
4,4'-DDT (DDT)	0.00	50.0	28.7	57.4	50.0	28.1	56.2	2.1	40-150	<40
Dieldrin	0.00	50.0	44.1	88.2	50.0	46.8	93.6	5.9	40-150	<40
Endrin	0.00	50.0	37.1	74.2	50.0	34.9	69.8	6.1	40-150	<40
Heptachlor	0.00	20.0	12.1	60.5	20.0	12.1	60.5	<1	40-150	<40
gamma-Hexachlorocyclohexane	0.00	20.0	18.2	91.0	20.0	18.5	92.5	1.6	40-150	<40
(Gamma-BHC, Lindane)										
Surrogates										
Decachlorobiphenyl	0.00	50.0	36.7	73.4	50.0	42.7	85.4	15.1	30-150	<40
Tetrachloro-m-xylene	0.00	50.0	34.7	69.4	50.0	37.5	75.0	7.8	30-150	<40

QC Batch No: 072617EB2; Dup or Spiked Sample: 88704.27; LCS: Clean Sand; QC Prepared: 07/26/2017; QC Analyzed: 07/27/2017; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aldrin	20.0	17.4	87.0	20.0	17.0	85.0	2.3	50-150	<40	
4,4'-DDT (DDT)	50.0	27.5	55.0	50.0	25.2	50.4	8.7	50-150	<40	
Dieldrin	50.0	43.8	87.6	50.0	43.1	86.2	1.6	50-150	<40	
Endrin	50.0	31.3	62.6	50.0	27.3	54.6	13.7	50-150	<40	
Heptachlor	20.0	12.3	61.5	20.0	12.8	64.0	4.0	50-150	<40	
gamma-Hexachlorocyclohexane	20.0	18.0	90.0	20.0	17.7	88.5	1.7	50-150	<40	
(Gamma-BHC, Lindane)										
Surrogates										
Decachlorobiphenyl	50.0	41.4	82.8	50.0	40.1	80.2	3.2	30-150	<40	
Tetrachloro-m-xylene	50.0	32.2	64.4	50.0	35.2	70.4	8.9	30-150	<40	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

Clark Seif Clark, Inc 4010 Watson Plaza Drive Suite 170

Lakewood, CA 90712-

Telephone: (562)435-8080 Attn: Aaron Garrett Page: 17

Project ID: 707074

Project Name: North Hollywood High

AETL Job Number Submitted Client
88704 07/25/2017 CSC-LB

Method: (8082), Polychlorinated Biphenyls (PCBs) by GC

QC Batch No: 072617; Dup or Spiked Sample: 88708.01; LCS: Clean Sand; QC Prepared: 07/26/2017; QC Analyzed: 07/27/2017; Units: ug/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Aroclor-1016 (PCB-1016)	0.00	500	435	87.0	500	495	99.0	12.9	50-150	<20
Aroclor-1260 (PCB-1260)	0.00	500	565	113	500	550	110	2.7	50-150	<20
Surrogates										
Decachlorobiphenyl	0.00	50.0	53.0	106	50.0	53.0	106	<1	30-150	<20
Tetrachloro-m-xylene	0.00	50.0	52.5	105	50.0	60.0	120	13.3	30-150	<20

QC Batch No: 072617; Dup or Spiked Sample: 88708.01; LCS: Clean Sand; QC Prepared: 07/26/2017; QC Analyzed: 07/27/2017; Units: ug/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Aroclor-1016 (PCB-1016)	500	465	93.0	500	436	87.2	6.4	50-150	<20	
Aroclor-1260 (PCB-1260)	500	441	88.2	500	472	94.4	6.8	50-150	<20	
Surrogates										
Decachlorobiphenyl	50.0	47.7	95.4	50.0	50.5	101	5.7	30-150	<20	
Tetrachloro-m-xylene	50.0	57.5	115	50.0	52.5	105	9.1	30-150	<20	

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#: Recovery is not within acceptable control limits.

*: In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has

been applied.

B: Analyte was present in the Method Blank.

D: Result is from a diluted analysis.

E: Result is beyond calibration limits and is estimated.

H: Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory

control.

J: Analyte was detected. However, the analyte concentration is an estimated value, which is between the Method

Detection Limit (MDL) and the Practical Quantitation Limit (PQL).

M: Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery

was acceptable.

MCL: Maximum Contaminant Level

NS: No Standard Available

S6: Surrogate recovery is outside control limits due to matrix interference.

S8: The analysis of the sample required a dilution such that the surrogate concentration was diluted below the

method acceptance criteria.

X: Results represent LCS and LCSD data.

Definition:

%Limi: Percent acceptable limits.

%REC: Percent recovery.

Con.L: Acceptable Control Limits

Conce: Added concentration to the sample.

LCS: Laboratory Control Sample

MDL: Method Detection Limit is a statistically derived number which is specific for each instrument, each method,

and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:

Matrix Spike

MS DU:

Matrix Spike Duplicate

ND:

Analyte was not detected in the sample at or above MDL.

PQL:

Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can

be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical

instrumentation and practice.

Recov:

Recovered concentration in the sample.

RPD:

Relative Percent Difference

November 21, 2016

Mr. Aaron Garrett Clark Seif Clark, Inc. 110 Pine Ave., Suite 925 Long Beach, CA 90802

Dear Mr. Garrett:

This letter presents the results of the soil vapor investigation conducted by Optimal Technology (Optimal), for Clark Seif Clark, Inc. on November 19-20, 2016. The study was performed at 5231 Colfax Ave., North Hollywood, California.

Optimal was contracted to perform a soil vapor survey at this site to screen for possible chlorinated solvents and aromatic hydrocarbons. The primary objective of this soil vapor investigation was to determine if soil vapor contamination is present in the subsurface soil.

Gas Sampling Method

At each sampling location an electric vacuum pump set to draw 0.2 liters per minute (L/min) of soil vapor was attached to the existing well and purged prior to sample collection. Vapor samples were obtained in SGE gas-tight syringes by drawing the sample through a luer-lock connection which connects the sampling probe and the vacuum pump. Samples were immediately injected into the gas chromatograph/purge and trap after collection. New tubing was used at each sampling point to prevent cross contamination.

All analyses were performed on a laboratory grade Hewlett Packard model 5890 Series II gas chromatograph equipped with a Hewlett Packard model 5971 Mass Spectra Detector and Tekmar LSC 2000 Purge and Trap. An SGE capillary column using helium as the carrier gas was used to perform all analysis. All results were collected on a personal computer utilizing Hewlett Packard's 5971 MS and chromatographic data collection and handling system.

Quality Assurance

5-Point Calibration

The initial five point calibration consisted of 20, 50, 100, 200 and 500 ul injections of the calibration standard. A calibration factor on each analyte was generated using a best fit line method using the HP data system. If the r² factor generated from this line was not greater than

0.990, an additional five point calibration would have been performed. Method reporting limits were calculated to be 0.01-1.0 micrograms per Liter (ug/L) for the individual compounds.

A daily calibration check was performed using a pre-mixed standard supplied by Scotty Analyzed Gases. The standard contained common halogenated solvents and aromatic hydrocarbons (see Table 1). The individual compound concentrations in the standards ranged between 0.025 nanograms per microliter (ng/ul) and 0.25 ng/ul.

TABLE 1

Dichlorodifluoromethane	Carbon Tetrachloride	Chloroethane
Trichlorofluoromethane	1,2-Dichloroethane	Benzene
1,1-Dichloroethene	Trichloroethene	Toluene
Methylene Chloride	1,1,2-Trichloroethane	Ethylbenzene
trans-1,2-Dichloroethene	Tetrachloroethene	m-/p-Xylene
1,1-Dichloroethane	Chloroform	o-Xylene
cis-1,2-Dichloroethene	1,1,1,2-Tetrachloroethane	Vinyl Chloride
1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	Freon 113
4-Methyl-2-Pentanone	Cyclohexane	Acetone
Chlorobenzene	2-Butanone	Isobutane

Sample Replicates

A replicate analysis (duplicate) was run to evaluate the reproducibility of the sampling system and instrument. The difference between samples did not vary more than 20%.

Equipment Blanks

Blanks were run at the beginning of each workday and after calibrations. The blanks were collected using an ambient air sample. These blanks checked the septum, syringe, GC column, GC detector and the ambient air. Contamination was not found in any of the blanks analyzed during this investigation. Blank results are given along with the sample results.

Tracer Gas Leak Test

A tracer gas was applied to the soil gas probes at each point of connection in which ambient air could enter the sampling system. These points include the top of the sampling probe where the tubing meets the probe connection and the surface bentonite seals. Isobutane was used as the tracer gas. No Isobutane was found in any of the samples collected.

Purge Volume

The standard purge volume of three volumes was purged in accordance with the July 2015 DTSC/RWQCB Advisory for Active Soil Gas Investigations.

Shut-in Test

A shut-in test was conducted prior to purging or sampling each location to check for leaks in the above-ground sampling system. The system was evaluated to a minimum measured vacuum of

100 inches of water. The vacuum gauge was calibrated and sensitive enough to indicate a water pressure change of at least 0.5 inches.

Scope of Work

To achieve the objective of this investigation a total of 32 vapor samples were collected from 15 locations at the site. Sampling depths, vacuum readings, purge volume and sampling volumes are given on the analytical results page. All the collected vapor samples were analyzed on-site using Optimal's mobile laboratory.

Subsurface Conditions

Soil conditions offered sampling flows at 0" water vacuum. Depth to groundwater was unknown at the time of the investigation.

Results

During this vapor investigation none of the compounds listed in Table 1 above were detected above the listed reporting limits. A complete table of analytical results is included with this report.

Disclaimer

All conclusions presented in this letter are based solely on the information collected by the soil vapor survey conducted by Optimal Technology. Soil vapor testing is only a subsurface screening tool and does not represent actual contaminant concentrations in either the soil and/or groundwater. We enjoyed working with you on this project and look forward to future projects. If you have any questions please contact me at (877) 764-5427.

Sincerely,

Attila Baly Project Manager

Site Name: 5231 Colfax Ave., North Hollywood, CA Lab Name: Optimal Technology Date: 11/19/16

Analyst: J. Rice Collector: J. Rice Inst. ID: HP-5890 Series II

SAMPLE ID
Sampling Depth (Ft.)
Purge Volume (ml)
Vacuum (in. of Water)
Injection Volume (ul)
Dilution Factor

BLANK-1	SV-5-5'	SV-5-15'	SV-7-5'	SV-7-15'	SV-6-5'	SV-6-15'	SV-1-5'
N/A	5.0	15.0	5.0	15.0	5.0	15.0	5.0
N/A	1,130	1,290	1,130	1,290	1,130	1,290	1,130
N/A	0	0	0	0	0	0	0
50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000
1	1	1	1	1	1	1	1

COMPOUND	REP. LIMIT
Dichlorodifluoromethane	1.00
Chloroethane	1.00
Trichlorofluoromethane	1.00
Freon 113	1.00
Methylene Chloride	1.00
1,1-Dichloroethane	1.00
Chloroform	1.00
1,1,1-Trichloroethane	1.00
Carbon Tetrachloride	0.02
1,2-Dichloroethane	0.04
Trichloroethene (TCE)	0.10
1,1,2-Trichloroethane	1.00
Tetrachloroethene (PCE)	0.10
1,1,1,2-Tetrachloroethane	1.00
1,1,2,2-Tetrachloroethane	1.00
Vinyl Chloride	0.01
Acetone	1.00
1,1-Dichloroethene	1.00
trans-1,2-Dichloroethene	1.00
2-Butanone (MEK)	1.00
cis-1,2-Dichloroethene	1.00
Cyclohexane	1.00
Benzene	0.03
4-Methyl-2-Pentanone	1.00
Toluene	1.00
Chlorobenzene	1.00
Ethylbenzene	0.40
m/p-Xylene	1.00
o-Xylene	1.00
Isobutane (Tracer Gas)	1.00

| CONC (ug/L) |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |

Site Name: 5231 Colfax Ave., North Hollywood, CA Lab Name: Optimal Technology Date: 11/19/16

Analyst: J. Rice Collector: J. Rice Inst. ID: HP-5890 Series II

Method: Modified EPA 8260B Detector: HP-5971 Mass Spectrometer Page: 2 of 5

SAMPLE ID
Sampling Depth (Ft.)
Purge Volume (ml)
Vacuum (in. of Water)
Injection Volume (uI)
Dilution Factor

SV-1-15'	SV-2-5'	SV-2-15'	SV-3-5'	SV-3-15'	SV-4-5'	SV-4-15'	SV-14-5'
15.0	5.0	15.0	5.0	15.0	5.0	15.0	5.0
1,290	1,130	1,290	1,130	1,290	1,130	1,290	1,130
0	0	0	0	0	0	0	0
50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000
1	1	1	1	1	1	1	1

COMPOUND	REP. LIMIT
Dichlorodifluoromethane	1.00
Chloroethane	1.00
Trichlorofluoromethane	1.00
Freon 113	1.00
Methylene Chloride	1.00
1,1-Dichloroethane	1.00
Chloroform	1.00
1,1,1-Trichloroethane	1.00
Carbon Tetrachloride	0.02
1,2-Dichloroethane	0.04
Trichloroethene (TCE)	0.10
1,1,2-Trichloroethane	1.00
Tetrachloroethene (PCE)	0.10
1,1,1,2-Tetrachloroethane	1.00
1,1,2,2-Tetrachloroethane	1.00
Vinyl Chloride	0.01
Acetone	1.00
1,1-Dichloroethene	1.00
trans-1,2-Dichloroethene	1.00
2-Butanone (MEK)	1.00
cis-1,2-Dichloroethene	1.00
Cyclohexane	1.00
Benzene	0.03
4-Methyl-2-Pentanone	1.00
Toluene	1.00
Chlorobenzene	1.00
Ethylbenzene	0.40
m/p-Xylene	1.00
o-Xylene	1.00
Isobutane (Tracer Gas)	1.00

| CONC (ug/L) |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |

Site Name: 5231 Colfax Ave., North Hollywood, CA Lab Name: Optimal Technology Date: 11/19/16

Analyst: J. Rice Collector: J. Rice Inst. ID: HP-5890 Series II

Method: Modified EPA 8260B Detector: HP-5971 Mass Spectrometer Page: 3 of 5

SAMPLE ID
Sampling Depth (Ft.)
Purge Volume (ml)
Vacuum (in. of Water)
Injection Volume (ul)
Dilution Factor

	SV-14-15'			
SV-14-15'	Dup			
15.0	15.0			
1,290	1,290			
0	0			
50,000	50,000			
1	1			

COMPOUND	REP. LIMIT
Dichlorodifluoromethane	1.00
Chloroethane	1.00
Trichlorofluoromethane	1.00
Freon 113	1.00
Methylene Chloride	1.00
1,1-Dichloroethane	1.00
Chloroform	1.00
1,1,1-Trichloroethane	1.00
Carbon Tetrachloride	0.02
1,2-Dichloroethane	0.04
Trichloroethene (TCE)	0.10
1,1,2-Trichloroethane	1.00
Tetrachloroethene (PCE)	0.10
1,1,1,2-Tetrachloroethane	1.00
1,1,2,2-Tetrachloroethane	1.00
Vinyl Chloride	0.01
Acetone	1.00
1,1-Dichloroethene	1.00
trans-1,2-Dichloroethene	1.00
2-Butanone (MEK)	1.00
cis-1,2-Dichloroethene	1.00
Cyclohexane	1.00
Benzene	0.03
4-Methyl-2-Pentanone	1.00
Toluene	1.00
Chlorobenzene	1.00
Ethylbenzene	0.40
m/p-Xylene	1.00
o-Xylene	1.00
Isobutane (Tracer Gas)	1.00

CONC (ug/L)	CONC (ug/L)			
ND	ND			

Site Name: 5231 Colfax Ave., North Hollywood, CA Lab Name: Optimal Technology Date: 11/20/16

Analyst: A. Baly Collector: A. Baly Inst. ID: HP-5890 Series II

Method: Modified EPA 8260B Detector: HP-5971 Mass Spectrometer Page: 4 of 5

SAMPLE ID	
Sampling Depth (Ft.)	
Purge Volume (ml)	
Vacuum (in. of Water)	
Injection Volume (ul)	
Dilution Factor	

BLANK-2	SV-9-5'	SV-9-15'	SV-10-5'	SV-10-15'	SV-15-5'	SV-15-15'	SV-13-5'
N/A	5.0	15.0	5.0	15.0	5.0	15.0	5.0
N/A	1,130	1,290	1,130	1,290	1,130	1,290	1,130
N/A	0	0	0	0	0	0	0
50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000
1	1	1	1	1	1	1	1

COMPOUND	REP. LIMIT
Dichlorodifluoromethane	1.00
Chloroethane	1.00
Trichlorofluoromethane	1.00
Freon 113	1.00
Methylene Chloride	1.00
1,1-Dichloroethane	1.00
Chloroform	1.00
1,1,1-Trichloroethane	1.00
Carbon Tetrachloride	0.02
1,2-Dichloroethane	0.04
Trichloroethene (TCE)	0.10
1,1,2-Trichloroethane	1.00
Tetrachloroethene (PCE)	0.10
1,1,1,2-Tetrachloroethane	1.00
1,1,2,2-Tetrachloroethane	1.00
Vinyl Chloride	0.01
Acetone	1.00
1,1-Dichloroethene	1.00
trans-1,2-Dichloroethene	1.00
2-Butanone (MEK)	1.00
cis-1,2-Dichloroethene	1.00
Cyclohexane	1.00
Benzene	0.03
4-Methyl-2-Pentanone	1.00
Toluene	1.00
Chlorobenzene	1.00
Ethylbenzene	0.40
m/p-Xylene	1.00
o-Xylene	1.00
Isobutane (Tracer Gas)	1.00

| CONC (ug/L) |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |

Site Name: 5231 Colfax Ave., North Hollywood, CA Lab Name: Optimal Technology Date: 11/20/16

Analyst: A. Baly Collector: A. Baly Inst. ID: HP-5890 Series II

Method: Modified EPA 8260B Detector: HP-5971 Mass Spectrometer Page: 5 of 5

SAMPLE ID	
Sampling Depth (Ft.)	
Purge Volume (ml)	
Vacuum (in. of Water)	
Injection Volume (ul)	
Dilution Factor	

							SV-11-15'
SV-13-15'	SV-12-5'	SV-12-15'	SV-8-5'	SV-8-15'	SV-11-5'	SV-11-15'	Dup
15.0	5.0	15.0	5.0	15.0	5.0	15.0	15.0
1,290	1,130	1,290	1,130	1,290	1,130	1,290	1,290
0	0	0	0	0	0	0	0
50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000
1	1	1	1	1	1	1	1

COMPOUND	REP. LIMIT
Dichlorodifluoromethane	1.00
Chloroethane	1.00
Trichlorofluoromethane	1.00
Freon 113	1.00
Methylene Chloride	1.00
1,1-Dichloroethane	1.00
Chloroform	1.00
1,1,1-Trichloroethane	1.00
Carbon Tetrachloride	0.02
1,2-Dichloroethane	0.04
Trichloroethene (TCE)	0.10
1,1,2-Trichloroethane	1.00
Tetrachloroethene (PCE)	0.10
1,1,1,2-Tetrachloroethane	1.00
1,1,2,2-Tetrachloroethane	1.00
Vinyl Chloride	0.01
Acetone	1.00
1,1-Dichloroethene	1.00
trans-1,2-Dichloroethene	1.00
2-Butanone (MEK)	1.00
cis-1,2-Dichloroethene	1.00
Cyclohexane	1.00
Benzene	0.03
4-Methyl-2-Pentanone	1.00
Toluene	1.00
Chlorobenzene	1.00
Ethylbenzene	0.40
m/p-Xylene	1.00
o-Xylene	1.00
Isobutane (Tracer Gas)	1.00

| CONC (ug/L) |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |
| ND |